Federal Agency and Organization Element to Which Report is Submitted: 4900
Federal Grant or Other Identifying Number Assigned by Agency: 1816197

Project Title:
NeTS: Small: RUL: Bulldog Mote- Low Power Sensor Node
and design Methodologies for Wireless Sensor Networks

Bulldog Mote Sensor Design
PD/PI Name:
Nan Wang, Principal Investigator

Woonki Na, Co-Principal Investigator: Lead Energy Harvesting Team

Recipient Organization:
California State University-Fresno Foundation

Team Members:
Calvin Jarrod Smith and Cameron Lane

Project/Grant Period:
10/01/2018 - 09/30/2021

Reporting Period:
10/01/2020 - 09/30/2021

Signature of Submitting Official (signature shall by submitted in accordance with

agency specific instructions):

et

National Science Foundation
Bulldog Mote Project

Progress as of October 1, 2021

Calvin Jarrod Smith
Cameron Lane

Supervisor: Dr. Nan Wang

Department of Electrical and Computer Engineering
California State University, Fresno

NSF NeTs Bulldog Mote Team

Contents

1 Purpose
2 Current Projects
3 Updated NeTs Mote
3.1 Overview e
3.2 Testing Previous NeTs Mote
3.3 Circuit and PCB Design o
3.4 Testing Procedureo
3.5 Results o
4 SM14 Bulldog Mote Shield
4.1 OVerview
4.2 Board and Wireless Module Selection
4.3 Sensor Selection
4.4 Device Power e
4.5 Circuit and PCB Designs
4.6 Firmware Developmento
4.7 Testing Procedure
4.8 Results
5 Bulldog Mote
5.1 OVerview e
5.2 Low-Dropout Regulators and Ferrite Bead Filters
5.3 External Flash Memory
5.4 Circuit and PCB Designs o
5.5 Testing Procedure o
5.6 Results e
6 Lightning Strike AODV (LS-AODV) Algorithm
6.1 Overview
6.2 Algorithm Development
6.2.1 Ad-Hoc On-Demand Distance Vector
6.2.2 Energy Aware-AODV (EA-AODV)
6.2.3 Need for Energy Balancing
6.3 Simulation
6.3.1 NS-3 . . . e
6.3.2 Energy Model
6.4 Implementation
6.5 Simulation and Resultso

List of Figures

CO 1O Ul W N

I I I e e e e e e e =)
N —m O © 00 ~J0O Ui W+~ O

23

24
25

26
27
28
29
30
31
32

33
34
35
36
37
38

NeTs Mote (blue board) and Updated NeTs Mote (black board).. 6
PCB Layout highlighting design error. 7
Circuit Layout of Updated NeTs Mote. 8
PCB Layout of Updated NeTs Mote. 9
NeTs Mote Connected to External Power. 10
JTAG Connected to NeTs Mote. 10
USB-to-TTL Adapter Connected to the UART Pins of the NeTs Mote. . . . 11
The SmartRF06 Evaluation Module used as a receiver. 12
Selecting CC2538 chip in the SmartRF Studio. 13
Setting the SmartRF06 board to receive packets. 14
Setting the NeTs Mote to transmit packets. 15
Enabling the on-board LED.o 0oL 16
Successful reception of NeTs Mote’s 100 packets. 17
SM14 Development Board and CC2538 Module. 19
The MQ135, BPW34 and BMP280 Sensor Devices. 20
Efficiency Charts for each Switching Voltage Regulator. 21
Recommended Circuit Layout for the TLV62150 IC for 3.3 V Output. 22
Recommended Circuit Layout for the TPS561201 IC for 5 V Output. 22
PCB Layout of SM14 Shield. 23
Basic Schematic of Buck Converter. 23
Voltage Reading of the 3.3 V Step-Down Converter. 26
Voltage Reading of the 5 V Step-Down Converter with enable pin high (a)

and enable pinlow (b).o 27
Combined SM14 System Connected to host computer via JTAG and USB-to-

TTL Adapter. 28
Using desk light to increase the luminous flux. 28
Using Isopropyl Alcohol as sensing phenomena for MQ135. Alcohol bottle cap

filled with alcohol and placed next to sensor (b). 29
Touching the BMP280 Sensor to increase measured temperature. 30
TelosB Network Setup. 30
The SM14 Shield System. 31
UART Readings for the MQ135 Sensor while being exposed to Isopropyl Alcohol. 31
UART Readings for the ALS while being exposed to the desk lamp. 32
UART Readings for the BMP280 while metal case was being touched. 32
TelosB Server reading temperature data from network and identifying SM14

System. ... 33
Voltage ripple caused from switching regulator [10]. 34
Circuit Layout of LDO Filter Circuit showing Parasitics [10]. 35
TPS7A20 Ground Current Versus Output Current [14]. 37
The AT25SF321B NOR Flash IC by Adesto. 38
Circuit Layout of Bulldog Mote System. 39
PCB Layout of Bulldog Mote. 40

39
40
41
42

43

44
45
46
47
48
49
50
51
52
53
54
5}

Inductor Connecting System to IPEX Connector instead of PCB antenna. . 41

Testing the 3 V Power Supply of Bulldog Mote. 42
Replacing the Ground Lead on Oscilloscope with Ground Spring. 43
Test Points for the 3.3 V Switching Regulator (Left) and for the 3 V. LDO

(Right). o 43
Test Points for the 5.3 V Switching Regulator (Left) and for the 5 V. LDO

(Right). 44
Bulldog Mote connected to JTAG Programmer. 44
Completed Bulldog Mote. 45
Output DC Voltage of 3 V System (Left) and 5 V System (Right) 46

Voltage Ripple of 3.3 V Switching Regulator(Left) and 3 V LDO output (Right). 46
Voltage Ripple of 5.3 V Switching Regulator(Left) and 5 V LDO output (Right). 47

Potential Route Request Paths to Destination. 51
RREQs broadcasted from Node S toward Node D.. 53
RREP Return Path from D to S. 54
ESP32-WROOM-32 Embedded Wireless MCU. 55
100 node topology 63
100 Nodes 1 PPS EA-AODV Simulation 65
100 Nodes 1 PPS LS-AODV Simulation 66

1 Purpose

The National Science Foundation (NSF) Bulldog Mote Team is part of California State Uni-
versity, Fresno Department of Electrical and Computer Engineering. The purpose of this
group is to discover, research and develop wireless communication protocols and hardware
used in Mobile Ad-Hoc Networks (MANETSs) and Wireless Sensor Networks (WSNs). This
team’s purpose is to research current wireless technologies and algorithms and create new

hardware implementations to support current and future protocols for both MANETSs and
WSNSs.

To accomplish this goal, the team has researched new a developing wireless schemes,
hardware to support the processing of data within these wireless networks and various rout-
ing algorithms used to direct data through MANETSs and sensor networks.

2 Current Projects

The Bulldog Mote team is currently working on several sensor mote hardware implementa-
tions as well as researching and testing routing algorithms that help to lower energy con-
sumption in a wireless sensor network or MANET. The current projects focus was to design
wireless sensor devices that use low-power and can be run on battery alone. One project,
still being developed, uses solar energy to keep the system running perpetually without the
need for battery replacement or human involvement. The current and completed projects
are listed below:

Updated NeTs Mote
An updated design of the first NeTs Mote, reported last year, was designed using differ-
ent passive components to help in the testing and implementation.

SM14 Bulldog Mote Shield

The first step toward implementing a working wireless sensor device was to take an al-
ready existing development board, the SM1472538PA1, with a microcontroller that was to
be used in future devices, and create a shield that fit over the development board’s header
pins. This shield contained various sensors and included two switching voltage regulators to
power the digital and analog sensors separately as well as the microcontroller.

Bulldog Mote

The development of the Bulldog Mote came shortly after the SM14 Shield device. A cus-
tom PCB was designed for the entire system, as well as including additional power supply
filters and external memory.

LS-AODYV Routing Algorithm

A new routing algorithm was developed, Lightning Strike Ad-Hoc On-Demand Distance
Vector (LS-AODV), to help increase the network lifetime in MANETs. The traditional
AODV algorithm [1] was analyzed, including the Energy Balancing AODV (EB-AODV) [2].
Energy pathways were discovered during the analysis and the LS-AODV algorithm was con-
ceived to take advantage of these pathways to distribute energy consumption throughout the
entire network. This research was recently submitted to a conference publication.

3 Updated NeTs Mote

Figure 1: NeTs Mote (blue board) and Updated NeTs Mote (black board).

3.1 Overview

Last year, the NeTs Mote was designed and assembled using the TT CC2630 wireless micro-
controller, custom PCB, inverted-F antenna, battery and various passive components. This
system was designed using Texas Instrument’s (TT) reference designs and chip recommen-
dations. During testing the chip could not be recognized by the programming module, and
was later found to have an error in the circuit design. This error was corrected as well as an
integrated balun being included for the CC2630 chip. The new design showed a fully func-
tioning antenna and transceiver circuit and demonstrated a fully functioning development
board for the CC2630 micorcontroller.

3.2 Testing Previous NeTs Mote

It was observed after circuit analysis that the PCB layout did not have the correct supply
voltage, VDDR, connection to the internal supply voltage, VDDS, as specified in the man-
ufacturer datasheet. Therefore, no further testing was possible and programming could not
be completed.

Figure 2: PCB Layout highlighting design error.

3.3 Circuit and PCB Design

In the new circuit and PCB design, the error with the supply voltages was corrected. In
addition, the Balun used to filter and tune the signals to and from the antenna were replaced
by an integrated Balun designed for the CC26XX line of TI chips. This made the assembly
of the PCB significantly more streamlined. As well, the passive components were chosen to
be a 0603 case size using imperial units, which also made placement significantly simpler
compared to the 0201 component case size.

In the reference designs Humidity and Temperature Sensor Node for Star Networks En-
abling 10+ Year Coin Cell Battery Life [3], the system contained a current limiting resistor
in series with the battery. Although small, this resistor keeps current low in the system and
prevents overdrawing the battery. If this were to happen, the voltage across the current
limiting resistor would drop significantly enough to cause the CC2630 chip to enter a Brown
Out state. For testing this system, the current limiting resistor was removed.

BATT1

VDDS

ol i
LI L Ll

i

VDDR
VDDR VODS
ut
DCOC_SW VOOR R |2
o e VODR
> oio_1 e
Slboss s
| i i 2l o0_3 e [
= *2io0_s
X005 s
{005 RXTX X
use_anP>——221 pio_7 rr_plt
Lepo3o—2U D08 AR n
21 pio_e -
2 pio_1o 2
24 pio_11 2
s VoDS 22100 12 onip |3t L
e oi_13 - LFB182G45BG5D920
2 _ 224 pio_1e 24NN [
; NRESET :; RESET
cpi00 JTAG_THS JTAG_TMSC n
12 orian 1a0_tex W TAG_Teke ok-Q1
ERID) 9644 x3zk_az
&2 crios
7 crios 21 coupL
2 GPios o w ii vss
i] £cP
vDDS = =
258
=
£
TN
JTAG_TuS
aTAG_Tek 9
2l
ESp2
Lepo <4

Figure 3: Circuit Layout of Updated NeTs Mote.

k\\/

o 00
| 00
8 00

o og

— [11108 cu

CK3823
of)
[]

Figure 4: PCB Layout of Updated NeTs Mote.

3.4 Testing Procedure

For testing and programming, the system needed to be connected a 3 V power supply. The
current supplied by a coin cell battery (which it was designed to operate with) is too small
for flashing a program onto the chip. The test point for VDDS and GND were used for this
purpose, bypassing the input diode and ferrite bead filter.

Figure 5: NeTs Mote Connected to External Power.

Then the JTAG was connected to the Olimex TMS320-XDS100v3 JTAG programmer
and debugger. A program was written using the Contiki NG operating system to flash the
on-board LED as a simple programmability test of the chip. This program was then flashed
onto the CC2630 chip using TT Flash Programmer 2.

Figure 6: JTAG Connected to NeTs Mote.

The next step was to test the UART serial communication used by Contiki NG to debug
their software. A USB to TTL adapter was used to connect the UART pins on the NeTs

10

mote to a host computer to read the serial messages. The software, RealTerm, was used to
connect to the USB port the adapter was connected to display the output of the system.

Figure 7: USB-to-TTL Adapter Connected to the UART Pins of the NeTs Mote.

The final step for testing was to ensure the antenna circuit and balun worked properly.
To do this, the TI SmartRF Studio 7 software package was used, as well as a SmartRF06
Evaluation Board with CC2538EM daughter card attached to act as a receiver.

11

Figure 8: The SmartRF06 Evaluation Module used as a receiver.

The SmartRF06 board was placed about 2.4 m away from the device under test, with
clear line-of-sight. This device was connected to a host computer as the receiver using the
TT SmartRF Studio 7. Once plugged in, the CC2538 chip was selected out of the list of
options.

12

®SmartRF Studio 7 - Texas Instruments - O X

k-

Smart ™ Studio 7

Sub-1 GHz 2.4 GHz (1 Connected)

CC2652P CC2652RB CC2652R CC2642R CC2640R2F CC2650
2 z, High PA y BAW) 2. : Hz
i} U C C!

v
CC2640 CC2538 CC2531

2.4 GHz : ¥ 2.4 GHz UsSB 2.4 GHz USB
\ y \ AC / \ ss MCU) ;

CC2530

2 z

L4

CC2550

2.4 GHz

List of Connected Devices: Refresh List: @

CC2538 - Device Control Panel Open. |

1 Connected Device(s) # TEXAS INSTRUMENTS

Figure 9: Selecting CC2538 chip in the SmartRF Studio.

Once this was selected, the Simple RX mode was selected and started. This idles any
program active on the board and the SmartRF Studio takes direct control of the hardware
through the JTAG to set the device to listen for incoming Zighee packets.

13

|
|
X

Easy Mode =~ PacketRX - P Start B s [Register View [] RF Parameters Device Resat

packet, chan
5.4 Data packet, channel 11

Pace

|

& |Preamble

Packet Count: | 100 | [] Infinite

Average RSSI
Received OK:
Received Not OK;
Packet Error Rate:
Bit Error Rate:

CC2538, Rev. 2.0, DID=XDS-06EB122113E1A Texas Instruments XDS100v3 A Radio State: IDLE

Figure 10: Setting the SmartRF06 board to receive packets.

For the device under test, the JTAG programmer was connected to another host computer
and the SmartRF Studio was started on that machine. This device was set to Packet TX

mode and started.

14

& XDS-FT53HPFSA - CC2630 - Device Control Panel = (] >
File Settings View Evaluation Board Help

: [Packet TX | P Stant B Stop Command View RF Parameters

Target Configuration e
RF Design Based On: ICCQSBUEM-TID > | @ DC/DC Enable [] Cap-array Tuning @ Customize. ..

Typical Settings
Category Setting Name

« Settings
|IEEE 802.15.4

RF Parameters @
11 > || 2405 ~| MHz

Continuous TX | Continuous RX | Packet TX | Packat RX

Packet Count: | 100 Infinite

Preamble Length
(32 bit) (dec)
01010101 30 ‘S Nlb[] 90 b8 19d9 9d 36 efa3 9 66 Ge Zc c7 d2 4532 Tcee ea 09 26 6b da 38 eB Sa ae

Packet Data

Add Seq. Mumber

Random | b0 90 b8 19 d9 9d 36 ef a3 97 56 5a 2¢ c7 d2 45 a2 1c ee ea 09 25 5b 42 38 ef 5a ae

Sent Packets:

Channel:
Output Power:

Stat || swe |

Figure 11: Setting the NeTs Mote to transmit packets.

3.5 Results

For the LED test, the NeTs Mote was programmed using the Contiki NG operating system,
including board firmware. The program successfully controlled the IO pins to turn the LED
on and off.

15

Figure 12: Enabling the on-board LED.

During the testing for the UART, there was no communication that could be established
between the NeTs Mote and the host computer. So this error will need further investigation
and troubleshooting.

However, for the antenna test, the SmartRF06 module received all 100 transmitted test

packets without error with an average RSSI of -41.8 dBm. This shows that the antenna
circuit and balun work correctly and no further testing is needed.

16

€D Lost device - CC2538 - Device Control Panel - [} X
File Settings View Evaluation Board Help

Easy Mode =~ PacketRX - P Start W step [] Register View [| RF Parameters Device Reset

5.4 Data packet, channel 11

Prrh

|

& |Preamble

Source
w |Address

-

Packet Count: | 100 | [infinite

Average RSSI: -41.8 dBm
Received OK: 100
Received Not OK: 0

Packet Error Rate: 0.0 %

Bit Error Rate: 0.00 %

Figure 13: Successful reception of NeTs Mote’s 100 packets.

The NeTs Mote has been improved and is making progress toward a fully functioning
sensor mote with custom PCB design and PCB antenna. Further iterations will be necessary
for this development.

17

4 SM14 Bulldog Mote Shield

4.1 Overview

While the antenna circuit and completely custom system of the NeTs Mote was being de-
signed and tested, another device was designed that focused on a system’s power supply
and sensors. As a precursor to designing a working sensor mote, a development board was
chosen that contained a widely available wireless microcontroller module. This abstracted
antenna design and testing which permitted this project to focus on the other aspects of
wireless sensor mote design.

4.2 Board and Wireless Module Selection

To keep the focus of this part of the project on power and sensors, the SM1472538PA1V3.0
board was selected for its use of the CC2538 module. This module contained a TT CC2538
chip, which is another low-power wireless microcontroller that uses Zigbee or 6LoOWPAN
protocol. This was important because this system needed to be compatible with the TelosB
or Sky Motes that were previously purchased for the project. As well, the CC2538 module
contained all of the microcontroller components needed to be operational, such as system
clocks, passive components, and antenna circuitry and balun. This module was also designed
with an meandering inverted-F antenna which allowed a smaller form factor than the tradi-
tional inverted-F PCB antenna, despite having a less ideal radiation pattern.

In addition, this module was designed with the CC2592 Range Extender, which helps
amplify input and output 2.4 GHz radio transmissions. This range extender can be set to
high-gain mode or low-gain mode for the receiver and amplifies transmission power depend-
ing on the received power output from the microcontroller.

18

P
=
=
(ol |
23
I
Lt

Figure 14: SM14 Development Board and CC2538 Module.

This development board contained header pins that made it possible to devise a shield,
which is a PCB system that can sit on top of the board, fitting on those header pins, and
allow additional features to the board.

4.3 Sensor Selection

The use of sensors on the shield was the first concern since this was to be made into a sensor
mote. Three environmental phenomena were chosen as parameters for sensing: air quality,
ambient light and temperature. Several sensors were researched and the following sensors
were chosen: MQ135 for air quality sensing, BPW34 for ambient light sensing, and BMP280
for temperature sensing. The MQ135 was chosen for its ability to sense a wide range of
chemical contaminates such as benzene, ammonia, carbon monoxide, alcohol, or smoke. The
BPW34 was chosen because firmware was already written in Contiki NG operating system
for it. As well the BMP280 was chosen because of its reliability and low cost.

19

Figure 15: The MQ135, BPW34 and BMP280 Sensor Devices.

4.4 Device Power

The device power needed to be considered after sensor selection. Two of the three sensors,
the MQ135 and BPW34, were analog sensors that required 5 V power. The microcontroller
and the BMP280 required 3.3 V power to operate. These two different voltages required dif-
ferent voltage regulation. It was decided to use a higher voltage battery, then use switching
regulators (or buck converters) to efficiently step-down the voltage from the battery to make
the system more efficient.

TT’s Webench® Power Designer was used to design the two voltage regulators. The de-
signs were chosen to be 5 V and 3.3 V with a max of 1 A for each. Out of the various
options and designs, two were settled upon based on chip availability on the electronics sup-
plier, Mouser’s website and overall fewest Bill of Materials (BOM) count. The TLV62150
and TPS561201 buck converter chip were chosen for 3.3 V and 5 V respectively. The power
supply circuits given by TI's Webench are shown below. To power these supplies, a 9 V
battery cell was decided upon because of its relatively compact size and having a voltage
greater than the highest needed for the system.

To determine the efficiency of each buck converter, the current consumption of each
device needed to be determined. The current draw of each device was tabulated from either
their respective datasheet or from measuring the device’s current draw at steady-state and
is shown in Tables 1 and 2:

CC2538 Components Consumption (mA)
Core 13.00
Radio (TX) 34.00
General Purpose Timer 0.12
12C 0.10
UART 0.70
ADC 1.20
Total current consumption 49.12

Table 1: Current Consumption of each CC2538 Component based on the CC2538 Datasheet
[4].

20

Device Consumption (mA) | Device Voltage (V)
CC2538 Compenents 49.12 3.3
CC2592 155.00 (max) 3.3
BMP280 1.12 3.3
MQ135 110.00 5.0
ALS 0.10 5.0
LEDSx4 8.00 3.3
Total 3.3 V current consumption 213.24
Total 5 V current consumption 110.10

Table 2: Current Consumption of all board devices.

Using the charts given for each respective switching regulator the efficiency of each device
can be determined when at maximum current usage:

Efficiency Efficiency
1 i 1 97.00
95 — — "
o / . 9675 /
o~
93 / // 96.50
—

0 / / 96.25
- - N\
=1 / o600 | — — N
o Iy / \
= £ 9575
0 90 / a2 \
S S N
E s / = 9550 \

w
. / 9525
87 9500 \\\
9475 P
86 N
o 94.50 !

01 0.2 0.3 04 0.5 0.6 07 08 09 1.0 0.1 0.2 0.3 04 05 0.6 07 0.8 09 1i[I
Output Current (A) Output Current (A)
=\in=7.0V==Vin=8.0V==Vin=9.0V m=Vin=7.0V==Vin=8.0V==Vin=9.0V
(a) TLV62150RGTR Efficiency for 3.3 V Devices (b) TPS561201DDCR Efficiency for 5 V Devices
[5]. [6].

=
=Y

Figure 16: Efficiency Charts for each Switching Voltage Regulator.

These chart indicate the efficiency at maximum current consumption with a fully charged
9 V battery is approximately 90.2% for the 3.3 V converter and 95.55% for the 5 V converter.

4.5 Circuit and PCB Designs

The TI Webench® Power Designer recommended circuit designs for the TLV62150 IC (3.3 V
buck converter) and the TPS561201 (5 V buck converter) are shown in Figures 17 and 18:

21

L1

22 pH
11,565 mOhm

Y YN
Vout = 3.3V
lout = 1.0A
sw [Rpg
VOs 100.0 kOh
VIN 63.0 mW
| TLV62158:F—AASA—
EN
U1 FSW
S5 TR
+ 3
== Vin
T- DE
GND |
" B Rfb2
=Cin 562.0 kG =§;2c_’é'ﬁF ()Iout
l?domu()Fhm ==CSS | 63.0 mw 1.0 mOhm \J
390.0 pH
1.0 moOh
é Rfb1
180.0 kOh
100.0 mW

-

Figure 17: Recommended Circuit Layout for the TLV62150 IC for 3.3 V Output.

Cbst L1 Vout = 5.0V
e Bodm lout = 1.0A
[TPS561201DDC) 1.9 mOhm 80.0 mohm
VIN VBST. ?:m N

VFB|

Lo o
Hl

- GND

|
|
]
3
1

é Rfbt
56.2 kOhm
500 mW
L Cout

10.0 uF — out
4.0 mOhm 47.0uF \N,
aty= 2 Rfbb 2.082 mOhi
10.0 kOhm
50.0 mW

Figure 18: Recommended Circuit Layout for the TPS561201 IC for 5 V Output.

Given the circuit schematic for the power supplies, the circuit design of the rest of the
system was completed using the recommended layouts from each device’s manufacturer. The
completed PCB design for the SM14 Sheild is shown in Figure 38:

22

show bod yd bsioznoge
32N ert bnp ...

O O

goo

)

0000000000
OO0OO0OO0O0O00000
0000000000
OO0OO0O0O0O00000

Figure 19: PCB Layout of SM14 Shield.

Separate input diodes were used to direct current into the two voltage regulators. To
determine the maximum current draw through the input diode, the current consumption
at the output and the efficiency of each regulator needs to be known at their maximum
draw. These values were found in the previous section. They can be applied to the following
equation:

P, = P;, x Efficiency (1)

The input and output power can be calculated using the following diagram:

BuckConverter

Din

I\I‘l Vin Vout

P I
Vd=0.350V ? Tout

9V

il

GND

Figure 20: Basic Schematic of Buck Converter.

To find I;,,, the formula for power:
P=VxI (2)

23

in equation (1):

Pi . Pout - ‘/out X [out (3)
Vi Vin X Efficiency Vi, X Efficiency

With this equation the input current for the 3.3 V regulator and 5 V regulator were
90.19 mA and 66.6 mA, respectively, during the maximum current draw. Therefore the

Toshiba 1SS385FVL3F Schottky Diode was chosen as the input to each regulator as its
maximum forward current was 100 mA.

Iin =

As well, voltage dividers were used on the outputs of the MQ135 and ALS to drop the
analog voltage range from 0-5 V to 0-3.3 V.

4.6 Firmware Development

Firmware for the CC2538 chip already existed in the Contiki NG operating system. How-
ever, the firmware for the BMP280 and the CC2592 needed to be written, as well as ADC
pins to read the ambient light sensor (ALS) and the MQ135, and an extra IO pin to control
the 5 V switching regulator.

The CC2592 requires the control of three pins to determine when transmitting and re-
ceiving, and whether the receiver is in high-gain mode or low-gain mode. The pin inputs
and controls are shown in table 3.

PA_EN | PA_EN | HGM | Mode of Operation
0 0 X Power down
X 1 0 RX Low-gain Mode
X 1 1 RX High-gain Mode
1 0 X TX

Table 3: CC2592 Control Pins [7].

The control sequences for the PA_EN, LNA EN and HGM had to be placed in the correct
locations to change the modes before and after transmissions, and when the system first
starts. First, under arch/platform the directory for the cc2538dk was copied and name
bulldogV1 for the new mote platform being made. Then within this new folder, the plat-
form. c file was modified. This file, platform.c, handles all of the system initialization and
sleeping sequences. The pins to control the CC2952 chip were initialized in the platform-
_init_stage_three(), which is the last initialization function of the system. All three pins
were configured as outputs, then the PA_EN pins was set to 0 and LNA_EN was set to 1 to set
the system to begin in RX mode. The high/low-gain mode was set by using a conditional
directive that checks if the constant CC2538_RF_RE_HGM_EN is 1 or 0 and sets the HGM pin
accordingly.

For changing the pins depending on the mode of operation, the chip firmware needed to
be modified. All microcontroller (as opposed to platform) firmware is located in {{Contiki-

24

Home}/arch/cpu. For the CC2538 chip, the file cc2538/dev/cc2538-rf.c was adjusted in
the transmit () function for this purpose. Since this file dealt with the low-level chip drivers
the device registers were handled manually to set and reset the LNA and PA pins. The TI
C(C2538 Datasheet was used to determine the algorithm needed to correctly set and reset
these pins and was implemented using Contiki NG’s REG() function call to write to the chips
registers. The PA pin was set to 1 and LNA to 0 during the transmission, and reset (PA

to 0 and LNA to 1) after the transmission was complete. This would handle switching from
RX to TX mode, and back again.

The BMP280 firmware was written and placed in the {Contiki-Home}/arch/platform/-
bulldogV1 directory along with the other sensor firmware. The format for calling the driver
functions was copied identically to the existing drivers to make using existing Contiki NG
sensor data acquisition seamless. This platform however, did not contain an I12C protocol
driver to communicate with the BMP280, so these drivers were also written using the exact
hierarchy as in other platforms in Contiki NG that already had I2C drivers written. The
remainder of the BMP280 drivers were written using Bosch’s BMP280 datasheet algorithms
and recommendations [8].

In addition, the analog sensors themselves needed to be turned off to save energy. To
do this, the enable pin of the 5 V buck converter was used to turn the ALS and MQ135
off. This pin was wired to the CC2538 module on pin A4. The MQ135 and ALS sensors
had their own firmware written using other analog sensor firmware in Contiki NG. Within
each devices firmware in mql135-sensor.c and als-sensor.c, the configure function was
altered to more effectively turn and off the voltage regulator. The configure() function
would help in this case and has many purposes and is called on several occasions. It has
two parameters: type and value. When the system is first started up and the sensors need
to be configured for the first time before use, the configure() function is called on each
sensor and the type parameter is passed with a value SENSORS_HW_INIT. This is useful to set
hardware pin values, and write to hardware registers if using a digital sensor. The other
event that requires the configure() function to be called is when a sensor is when a sensor
is activated or deactivated in the Contiki application file using SENSOR_ACTIVATE(...) or
SENSORS_DEACTIVATE(...) respectively. When these functions are called the type passed to
configure() is equal to SENSOR_ACTIVATE. Then walue is used to determine if the sensor is
activated or deactivated. For both the ALS and MQ135 these concepts were used to write
the firmware to enable and disable the 5 V regulator.

It was observed during initial testing that obtaining a single sensor sample (from the ALS
and MQ135) resulted in very inconsistent readings. The firmware was modified to obtain
many samples equal to a power of 2 (128), and use a right shifting operation to average
out the readings. This produced much more consistent and smoother changes in the sensor
data. It was later determined that the cause of this was likely a large voltage ripple due
the switching action of the 5 V buck converter. The ripple was significantly reduced in the
Bulldog Mote design.

Lastly, the UART pins of the board needed to be changed to be connected to UART

25

header pins on the SM14 shield. The header pins for UART RX and TX were connected to
pins A0 and A1 on the CC2538 module, respectively. The pins were changed in Contiki under
{Contiki-Home}/arch/platform/dev/board.h. This file contains all of the platform’s pin
names and was used to rename the LED pins, MQ135 and ALS pins, 12C pins and CC2592
pins.

All firmware for the SM14 Shield and Bulldog Mote is included in Appendix A.

4.7 'Testing Procedure

To test the functionality of the SM14 Shield, three separate tests were performed: a voltage
regulator test, a sensor test using the UART to read the sensor data, and a wireless net-
working test to transmit a specific sensor’s data through a network to a server. The voltage
regulators needed to be tested to ensure corrected voltage level for the separate systems.
Also, each sensor needed to be tested to see if it was operating sufficiently, to do this a desk
light was used hovering over the board to test the ALS, a bottle of rubbing alcohol was used
to test the MQ135, and touching the metal of the case to warm up the BMP280 temperature
sensor. Rudimentary sensor tests as this were the only option as a temperature controlled or
light controlled environment was not possible. Neither was it possible to access to a chemical
hood with precise control in parts-per-million of air contaminates such as alcohol, carbon
monoxide, benzene, or ammonia.

Test points were placed on the board to test the power systems. To start, the SM14 shield
was not connected to the header pins of the SM147Z2538PA1 board. The shield’s 9 V battery
connectors were connected to an external DC power supply set to 9 V, and a multimeter
was used to read the Vout test point of the 3.3 V voltage regulator.

Figure 21: Voltage Reading of the 3.3 V Step-Down Converter.

Next, the 5 V regulator needed to be tested. To do this, the converters enable needed
to be connected to the 3.3 V regulator output to turn the system on and ground to turn
the system off. This was done and the multimeter was connected to the 5 V buck converter
output.

26

Figure 22: Voltage Reading of the 5 V Step-Down Converter with enable pin high (a) and
enable pin low (b).

To test the sensors, a program was written using Contiki NG to read all of the sensors
and output the data over UART. Next, shield was fitted on the top of the SM147Z2538PA1
pins, then the combined system was connected to a host computer through Olimex TMS320-
XDS100v3 JTAG programmer, and the UART pins connected to the USB-to-TTL adapter
just like the NeTs Mote during testing.

27

Figure 23: Combined SM14 System Connected to host computer via JTAG and USB-to-TTL
Adapter.

For the sensor test, a desktop light was used to change the readings of the ALS. The
UART messages were read using RealTerm software.

Figure 24: Using desk light to increase the luminous flux.

Next, the MQ135 was tested. After the system had warmed up and the MQ135 readings
had stabilized, the sensor was introduced to vapors from isopropyl alcohol.

28

Figure 25: Using Isopropyl Alcohol as sensing phenomena for MQ135. Alcohol bottle cap
filled with alcohol and placed next to sensor (b).

Then the temperature sensor was tested by allowing it to run at room temperature for
about 20 minutes, then touching the sensor’s metal casing to increase the temperature read-
ings.

29

Figure 26: Touching the BMP280 Sensor to increase measured temperature.

The last test was to place the SM14 system into an existing wireless sensor network
and successfully transmit data to a data server. A program in Contiki NG was written for
a UDP client to transmit temperature data to a UDP server. Several TelosB motes were
programmed in the same fashion and a one was also used as the server itself. The server was
connected directly to the host computer to read the output messages from the networked
motes.

(b) TelosB Client Setup with SM14 System
forming a network.

(a) TelosB Mote used as Server.

Figure 27: TelosB Network Setup.

30

4.8 Results

Figure 28 shows the completed SM14 Shield System on top of the SM1472538PA1 develop-
ment board.

Figure 28: The SM14 Shield System.

As seen in figures 21 and 22, the power systems measured within 10% of expected volt-
ages and do not exceed the manufacture’s maximum voltage ratings for either system.

As seen in figures 29, 30 and 31, the ALS and MQ135 do detect fluctuations in light
and alcohol levels, and the BMP280 does correctly measure temperature. However, the
MQ135 and ALS are not calibrated. Even though these sensors are giving readings that
vary with changing phenomenon, it isn’t an accurate method to measure luminous intensity
(lux) or air-quality indication (AQI). For this, accurate measurement devices and controlled
environments would be required to test and tune these sensors by selecting the correct circuit
resistances and/or software calibration.

i
D 12
T
Crs|
nenny
D5A 16|
Ringl5
BREAY
Enin

T4 0

(= i3]

nen qy

DA 16|

Ring 5

- BREAY
| ™ Sertack £

| Chae Count:34226 P50 Port: 4 115200 841 Non | |Mak= terminal ondy | data frame wide Cher Count37916 CPs0 Port: 4 115200 841 Non |

Figure 29: UART Readings for the MQ135 Sensor while being exposed to Isopropyl Alcohol.

31

MQ135 veading: 1695LF
ALS Reading: 31, 8.3, 43 luxlf
Temperature: 22.13 C, Pressure: 188358 Palr
MQ135 reading: 1698LF
LS Reading: 32, 8.3, 43 luxlr
Temperature: 22.13 C,. Pressure: 1WH358 Palf

[MQ135 reading: 1667LF

IALS Reading: 28, 8.3, 48 luxlr

Temperature: 22.14 C, Pressure: 188357 Palr
MQ135% reading: 1624Lf

I. L8 Reading: 32, 8.3, 43 luxlf

: emperature : 22.12 C, Pressure: 1WW354 Palr
Q135 reading: 1638l

LS Reading: 596, 8.37, 501 luxlf
emperature: 22.15 C, Pressure: 1B.35%5 Palr

Display | Port | Capture | Pins | Send | EchoPort| 12C | 1262 | 12CMisc | Misc | An| Clear| Freeze| ?|
pispiayﬁs ™ [~ Half Duplex Status
= Ef]g:' E V' newline mode | Cormected
@ Heaisngca,] [Invert [7Bits _IRXD (2)
o T30 0
Img Data Frames _ICTS (8)
" ntB Bwvtes |2 % DCD (1)
o E«IQ;E [~ Single Gulp | - D;H (6)
" Binaty | Ring [9]
3 f,:_lllbblg Rows Cols | BREAK
HggtCSU Terminal Font IVE = 'BU 2 I Scrollback | Error
CharCuu£§1?DQE CPS:0 Port: 4 115200 8N1 Non

Figure 30: UART Readings for the ALS while being exposed to the desk lamp.

B RealTerm: Serial Capture Program 2.0.0.70 == O X

MQ135 veading: 3797
ALS Reading: 128, 8.8, “15 luxlf
emperature: 21.67 C. zure = 188366 Palr
Q135 reading: 3841l
ALS Reading: 123, *17 luxlr
H A sure: 180365 Palr
MQ135 reading: 37931
ALS Reading: 123, 8.8, *17 luxlr

Temperature: 21.83 C. sure: 188368 Palr
Q135 reading: 3735l

ALS Reading: 124, 8.8,
emperature: 26.1 C, T wwre: 188368 Palr
Q135 reading: 3754lf

ALS Reading: 123, 8.8, *17 luxlr

*18 luxlr

emperature: 26.66 C. sure: 106368 Palr

Display | Port | Capture | Pins | Send | EchoPort| 12C | 1262 | 12CMisc | Misc | An| Clear| Freeze| 2|

[I)i.spiayﬁs [~ Half Duplex Status

5 Ef]g:' ' W newLine mode | Cornected

. Hesfsoace] [Invet [ZBits _IRXD (2)

Coong o | M X0 3

s lmg Data Frames _ICTS (8)

" mtl ?E Bvtes |2 3 DCD (1)

}_ uintl - DSA ls]

" Asci [Single _Gulp | =]

" Binaty % | Ring [9]

3 f,:_lllbblg R_OWS = Cols | BREAK

Hgftcgu Terminal Font ﬁE %l 180 2] I Scrollback _ | Error
Char Count:41630 CPS:0 Port: 4 115200 8N1 Non

Figure 31: UART Readings for the BMP280 while metal case was being touched.

32

As well, figure 32 shows the temperature data from the SM14 System was obtained and
displayed. Successful reception of the SM14 system’s readings demonstrates the correct oper-
ation of the CC2592 range-extender chip. Despite the SM14 system not seemingly receiving
any data, packet reception on the SM14 system is necessary for any data transmissions to
be received because of the formation of the RPL DODAG used for network routing [9].

Figure 32: TelosB Server reading temperature data from network and identifying SM14
System.

Overall, SM14 system worked well as a first-step to creating the Bulldog Mote. Instead
of focusing on the microcontroller and board components, the SM14Z2538PA1 platform was
used as a base of the SM14 Shield. This allowed the focus to be placed on sensor selection
and power.

33

5 Bulldog Mote

5.1 Overview

The SM14 Shield was a stepping stone to creating a new mote system. The Bulldog Mote
is the extension that takes the SM14 Shield into a custom, mobile mote system. Modifica-
tions were made to the power system to correct potential issues with the switching regulator
output and external memory was added. The sensors and other peripherals were connected
to the CC2538 module through the same pins as the SM14 board to keep the firmware the
same for both boards.

5.2 Low-Dropout Regulators and Ferrite Bead Filters

Switching regulators aim to generate a stable DC voltage which can be selected by the use
of passive components. The act of switching in these regulators creates voltage ripples at
the output with a frequency equal to that of the regulator switching frequency. As well, the
output of these systems can contain voltage spikes that are created from the duration of the
transition times during the switching. In sensitive systems, such as an RF transceivers, this
voltage ripple and spikes need to be reduced as much as possible. Output capacitors do filter
out some of this noise, however, some additional filtering might be necessary [10].

SWITCHING SPIKES: HARMONIC CONTENT
RIPPLE: TYPICALLY 100kHz to 3MHz APPROACHING 100MHz

N / AN

ANAD1 FO2

Figure 33: Voltage ripple caused from switching regulator [10].

One solution is to use a Low-Dropout (LDO) or Linear Regulator with input and output
capacitors, along with ferrite bead filter. The LDO layout that is recommended by the Linear
Technology application note, Minimizing Switching Regulator Residue in Linear Regulator
Outputs is shown in figure 34

34

LAYOUT PARASITIC C

PARASITIC C

e

T oo
INPUTDC+RIPPLE PARASITIC G ’!-l-l . FERRITE BEAD —

VVv

AND SPIKES FROM ___I |__ OR INDUCTOR FILTER
SWITCHING REGULATOR i -: = o L .
FERRITE BEAD —L_ AR
ORINDUCTOR —T— CAPACITOR

I |
/ ;
PARASITIC ; PARASITIC

LANDR \]
REGULATOR (FINITE GAIN-BANDWIDTH
AND PSRR VS FREQUENCY)

PARASITIC

? \ PARASITIC
LANDR

MONITORING
0SCILLOSCOPE

I|I:--'MN'-
AN

|||—
*

1

)

Figure 34: Circuit Layout of LDO Filter Circuit showing Parasitics [10].

This diagram shows not only the recommended circuit layout, but also the component
parasitics that may need to be considered during the design phase. The moral of the story
is that despite how well the circuit is designed to reject the ripple and noise, it won’t be
perfect and there will always be a small amount of ripple that makes it through the circuit
because of parasitics. However, applying an LDO plus ferrite bead filter will greatly atten-
uate whatever voltage ripple and spikes do exist.

To remedy some parasitics, a combination of tantalum and ceramic capacitors were used
in the Bulldog Mote design. Ceramic capacitors have the benefit of having extremely low
effective series resistance (ESR) and effective series inductance (ESL), as well as a decent
capacitance per unit volume and very low cost. Tantalum capacitors have much better re-
siliency to vibration and better voltage stability compared to ceramic capacitors but do not
benefit from the same low ESR and ESL, and are much more expensive [11]. So for the Bull-
dog Mote design, tantalum capacitors were chosen as the output capacitors for both voltage
regulator circiuts (3.3 V and 5 V) for the benefit of voltage stability and the remainder of
the capacitors were left as ceramic to keep costs low.

The specific LDOs were chosen based on the maximum current needed from each regulator
(table 2) and to minimize voltage drop-out a much as possible to increase efficiency as LDO
efficiency is rated as:

Iout ‘/out
X x 100% 4
(Iout + IGND) V; ’ ()

Where Ignp is the quiescent current of the LDO regulator.

Efficiency =

The TPS7TA0530 was chosen for the 3 V system, lowering system voltage to 3 V instead
of 3.3 V to keep the 3.3 V switching regulator components the same, and TPS7A2050 for the
5 V system. However the output of the 5 V switching regulator was changed to 5.29 V to
maintain the 5 V system voltage. The equation from the TPS561201 switching regulator’s

35

datasheet was used to calculate the new resistor values:

R2

Keeping R2 = 10k(2, and using 5.3 V output as an approximation, equation (5) can be
rearranged to find R1:

1
Vo = 0.768 X (1 + R—) (5)

Vou
R1 = R2 x (0 76t8 — 1) = 10000 x (5.3/0.768 — 1) = 59010.42 2 ~ 59 kS2 (6)
Then reapplying equation (5) to find the precise output voltage of the switching regulator:
59 k€2
Vout = 0.768 1+ ——] =52992V ~53V 7
t 8 (10 kQ) ™)

Increasing the voltage output of the TSP561201 was necessary since the TSP7A2050
LDO regulator placed at its output requires a minimum dropout voltage, which is a mini-
mum voltage difference between the input and output voltage of the LDO regulator needed
to maintain its nominal voltage output rating [12].

Given the input and output voltages to each LDO, switching regulator efficiencies, system
current demand and LDO quiescent current from the manufacturers datasheets, the overall
efficiency of each power system (3 V and 5 V) can be determined. To start the efficiency of
the combined switching regulator and LDO power supply can be determined as such:

Esupply = ELDO X Eswitch’ing (8)

Plugging equation (4) into (8), the 3 V system efficiency can be determined using the
quiescent current from the TPS7A0530 [13]:

0.21324 3
Es. - 2% 0.902 x 100% = 82.0 9
Suply 3V = 091324 4 6 x 106 3.3 x 100% % (9)

and the efficiency for the 5 V power system can be determined once the quiescent current

is found. The chart giving the quiescent or ground current of the LDO can be found in the
TPST7A20 datasheet:

36

4000

TJ A
— -55°C 85°C __5,,//""
1000 | = -40°C =—— 125°C e
0°C —— 150°C 7T
< 25°C
= ...:-""
= (]
: J
s 100 e
O ”r’
2 2l
5 —"'":: .n--"'/’/
O T |
L= L
10 B
2
0.001 0.01 0.1 1 10 100 300
Qutput Current (mA)
VEN =1V

Figure 35: TPS7A20 Ground Current Versus Output Current [14].

With the output current being 110.10 mA for the 5 V power system (table 2) the ground
current should be approximately 1.6 mA at room temperature:

0.1101 5
Es. — % =2 % 0.9555 x 100% = 88.9 10
Suerly 3V = 09701 +1.6 x 103 - 5.3 x 100% % (10)

Comparing these to the previous design, both power systems are less efficient that in the
SM14 Shield design. Despite this, the power systems will have less problems with voltage
ripple that can cause disturbances with the RF circuitry.

5.3 External Flash Memory

To help increase battery life, the system should be placed in a very low-power state for as long
as possible. In most microcontrollers, such as the CC2538, the lowest sleep state also erases
any data and variables in RAM and resets the programmed application. Unfortunately this
also erases the routing information of the network created by the Contiki NG software, which
would force a rediscovery of a network path back to the sink device on every wake-up. To
remedy this, an external flash memory module was included on the Bulldog Mote system.
The Adesto AT25SF321B NOR flash memory module was chosen for its low cost, large size
(32-Mbits or 4 Mbytes), and low-power standby current (25 pA) [15].

37

Figure 36: The AT25S5F321B NOR Flash IC by Adesto.

The device uses SPI with single, dual or quad I/O support for even faster data trans-
mission. SPI firmware and flash memory firmware had to be written as well to operate the
memory unit in Contiki NG.

38

5.4 Circuit and PCB Designs

2
< SV_REG_EN ‘ZZ Hz
.2 i
gy e V_Batt | 3.3V Switching| Regulator Output +3v
9V| Switching Regulator Output - D3 = B3 U6
2t % vosle =2 N NE L
N
29 =1 7 2 8 po L_‘/\'}{}\,L N
b u s < £
| RD E =
e 10.0kQ 59.0 kQ - ©
= Cout 5V
© e
Ay o=l
- 47.0 pF &=

3V Switching Regulator and LDO

28 L8 <8
8gzegs E33
ITAG_TMS
2 ¢ .
il TG TaIx CC2538 Module
& JTAG_TDO o
e & ITAGTDI +3V L 8=
B RESET T oL E us
g3
g €C2538 Module
JTAG 2 vop GND 2
1 GND PD4 '—3> SP1_CS0
2 PD3 [* SPL_MISO o
ol TS TMS D THS . PO ﬂg SPLMISO. o=
2= JTAG_TCLK)Hﬁ TCK 3 ﬁ
+3V S JTAG_TDO &&———2{TDO g PD1 ﬁ) SPI_MOST
B JTAG_TDI)>———L1TDI o PD@ ﬁ) SPI_CLK
e P 2 e
o5 s UART 8 e~ as.our
SPL_CS0 o5 vee S § .
SPI_MISO S0 AOLD ﬁ(MQ135_0UT
@F sok |- SPI_SCK 2—>> 5V_REG_EN
oo sife SPI_MOST e
o o
o 4MB NOR Flash
43V K UART_Rx
- > UART_TX 9.2
Mot ed
Air Quality Sensor Je
2| ot od o
Jd7|%FEE+ >
2= B w i
8lvobo_z GND_1
74 GND_: csB
VoDIO_1 soi 12C_SDA 1
00 Sok [+ < 12¢_sCK e

BMP280

280

BMP!
Temperature/Pressure Sensor

GND

Figure 37: Circuit Layout of Bulldog Mote System.

A couple changes were made to the Bulldog Mote from other previous designs. First, the
JTAG pins were changed from the standard 20-pin, 2.54 mm header pins, to the 10-pin
ARM JTAG using 1.27 mm header pins. This greatly reduces the interface size, despite
needing an additional adapter for the Olimex TMS320-XDS100v3 JTAG programmer. Also,
a power switch was included in this design, unlike the TelosB motes, which require manually
removing a AA battery from the battery pack to turn the device off.

39

ANT

—

5
(]

e
ors

(]

L
7

(@) 1'::[2

O ol Jad

esvil wo sxinoijulove1 ypolondost bnp sonsio2
.e2noqesY wo osmo1t divm bno noitiboyl ,yyomem Jud

1spniesido2 wdA-

—

oon

g o

o2 Eve_tuoy 1

P[] rel < o H ‘]8
s !

& il | S Ve _nfo

Y |

VE,MOO
3
= 3! s =
33

9

3

Figure 38: PCB Layout of Bulldog Mote.

The board sensors, JTAG, buttons and LEDs were all placed on the front side of the
board, the power supplies and memory module were then placed on the back of the board,
along with the battery pack. The large inductors of the power supplies needed to be kept
as far away from the antenna as possible to reduce the possibility of EM interference. As
well, the PCB board edge was modified so that there was no board directly underneath the
PCB antenna of the CC2538 module, which also means that no ground or power plane of
the PCB was underneath the PCB antenna either, which would adversely affect the antenna

performance.

40

Figure 39: Inductor Connecting System to IPEX Connector instead of PCB antenna.

Upon receiving the CC2538 modules, it was observed that during assembly, the last in-
ductor of the antenna balun was connected to the IPEX connector as opposed to the PCB
antenna. On each module that was mounted to the Bulldog Mote system, this inductor had
to be removed and resoldered to connect the PCB antenna instead.

5.5 Testing Procedure

Several tests were performed on the assembled Bulldog Motes. First was to test the DC
voltage to ensure correct output voltage to both power systems. Then, the antenna was
tested using the TT SmartRF Studio to ensure the replaced inductor did not adversely affect
RF transmissions. Lastly, the Bulldog Motes were placed in a network and all sensor data
was transmitted to a network sink to ensure all sensors were operating correctly. As well,
the output of each power supply was analyzed through an oscilloscope before and after each
LDO to ensure voltage ripple reduction.

The Bulldog Motes were connected to a DC power supply set to 9.0 V, just like the SM14

Shields, through the 9 V battery pack pins. The device was turned on using the power switch
and the 3 V power supply output was measured using a multimeter.

41

Figure 40: Testing the 3 V Power Supply of Bulldog Mote.

To test the 5 V power supply, the enable pin of the regulator had to have 3 V applied to
it. Once 3 V was applied, the 5 V supply was measured. Then the enable pin was connected
to 0 V and the supply was measured again to ensure the power supply correctly turned off.

The Bulldog Motes were left connected to the DC power supply, then the 3 V system
output was measured using an oscilloscope. The oscilloscope was set to AC coupling with
the 20 MHz bandwidth limit enabled to filter out unwanted environmental noise. As well,
the ground lead of the oscilloscope probe was replaced with a ground spring to eliminate
addition noise caused by the ground lead acting as an antenna.

42

Figure 41: Replacing the Ground Lead on Oscilloscope with Ground Spring.

The voltage ripple of the 3 V power supply was measured before and after the LDO on
the board’s test points. As well, the enable pin of the 5 V power supply was stimulated and
the 5 V power supply was measured before and after its LDO on the board’s test points.

Figure 42: Test Points for the 3.3 V Switching Regulator (Left) and for the 3 V LDO (Right).

43

Figure 43: Test Points for the 5.3 V Switching Regulator (Left) and for the 5 V LDO (Right).

Next, the Olimex JTAG programmer was connected to the board through a 20-pin JTAG
to 10-pin ARM JTAG adapter.

Figure 44: Bulldog Mote connected to JTAG Programmer.

The next test was for the antenna. The TI SmartRF Studio was started and used to test
the board identically to the SM14 Shield system. The results of the test are shown in table 4.

For testing the sensors and networking ability, an application was written in Contiki NG.

44

The pinouts and devices on the Bulldog Mote were the same as the SM14 Shield, therefore
the same testing program could be used for the Bulldog Mote. A TelosB Mote was used as a
network sink attached the a host device to read-out the data being sent through the network.

5.6 Results

Figure 45: Completed Bulldog Mote.

The Bulldog Motes were tested to ensure all DC power supplies worked correctly. All 9
Bulldog Motes measured correct voltages at the output of each supply within 10% of desired

voltage.

45

Figure 46: Output DC Voltage of 3 V System (Left) and 5 V System (Right)

In addition, an oscilloscope was used to measure the voltage ripple from each switching
regulator output and compared to the voltage ripple after the LDO and ferrite bead filter.

WPP=Z1.2mY Wpp=2.8mY

1AC BW 1omv}2 2|6 Tt B 1AC BW 1omv]20C

Figure 47: Voltage Ripple of 3.3 V Switching Regulator(Left) and 3 V LDO output (Right).

From figure 47, the attenuation of the ripple out of the switching regulator is -8.79 dB.
This is an almost 10-fold reduction in ripple voltage, and a much more acceptable ripple of
only 2.8 mV at the 3 V power system output. The same was done for the 5 V power system:

46

iMsals 4kpt (5] dous [Ho.ooov Sus 5000MSais 4Kkpt [B] dous [Hoooov
| TR A Gt Y K AREH) RAbE | 4 | T | TR A Gt Y K AREH) RAbE |

Ll

| MJ”{

Figure 48: Voltage Ripple of 5.3 V Switching Regulator(Left) and 5 V LDO output (Right).

This system attenuated the voltage ripple by -14.94 dB, an even larger reduction than
the 3 V system. The voltage ripple out of the 5 V system is very large, however since the re-
duction in the ripple through the LDO is significant and the 5 V supply is separate from the
more sensitive 3 V system used to power the microcontroller, the output ripple is acceptable.

During the next test, the antenna circuits of each mote the following results were obtained
while running the TT SmartRF Studio:

Mote RF Testing

Mote Num. | Total Packets | Packets Received OK | Packets Not Received OK
1 100 99 1
2 100 72 1
3 100 97 1
4 ? ? ?
5 100 100 0
6 100 99 1
7 100 98 0
8 100 99 1
9 100 90 2

‘ Packets Dropped | Packet Error Rate | Avg. RSSI (dBm) | Potential Issue ‘

0 0.01 -78.7
27 0.28 -70.4 Ant. inductor
2 0.03 -90.2
? ? ? Faulty Module
0 0 -84.7
0 0.01 -87
2 0.02 -87.6
0 0.01 -82.4
8 0.1 -84.4

Table 4: RF Testing Results of Bulldog Mote.

47

The criteria for passing a Bulldog Mote was to have 90% of transmitted packets received
OK. Motes 2 and 4 did not meet this criteria. Mote 2 was fixed by resoldering the antenna
inductor and reapplying the test, resulting in a 98 packets out of 100 being received OK, a
2% packet error ratio and an average RSSI of -83.8 dBm. However, several attempts were
made to fix mote 4. On this mote, the inductor antenna was resoldered as well as the en-
tire CC2538 module replaced. Neither of these attempts resulted in any readings from the
SmartRF software and Mote 4 was thrown out. Out of the 9 motes, 8 passed this test after
the antenna components were resoldered.

The sensor and network test were combined into one large test and the results were ob-
served on the output of the serial readings of the TelosB mote that was setup as a UDP
server. 4 out of 8 of the motes read a temperature of 0.0 degrees Celsius, which identified
them as faulty. These 4 devices had the BMP280 temperature sensors replaced and had fully
functioning temperature readings. The ALS and MQ135 sensors gave various, but consistent
readings. Again these analog sensors require additional calibration to read an accurate lux
or AQI measurement.

As a note, another benefit of using the external flash memory module can be to store the
MQ135 and ALS sensor calibration data. The BMP280 sensor contains its own calibration
data stored on the chip itself, that is needed to obtain correct readings of temperature and
pressure. However, the BPW34 and MQ135 are analog sensors with no digital storage. So
the flash memory could be used to store each mote’s calibration data on an individual bases
using a custom calibration application, then this data can be accessed when another appli-
cation is programmed onto the board to used these sensors.

Out of the 9 Bulldog Motes assembled, 8 successfully passed. More motes can be pro-
duced in the future, however due to the current chip shortage in 2020 and 2021, the initial
ICs for the power supplies were no longer in stock. Either the power supplies will need to
be redesigned using different parts and retested, or the current design can be kept and more
of the same parts ordered when supplies are replenished.

48

6 Lightning Strike AODV (LS-AODYV) Algorithm

6.1 Overview

Ad-hoc on-demand distance vector (AODV) is a very well established routing algorithm in
MANETSs and WSNs. This algorithm is relatively simple, and helps deal with the issue of
routing through a changing network and does not require constant routing maintenance [1].
Despite the prolific use of AODV, it lacks any awareness of energy consumption throughout
the network. Lightning Strike AODV (LS-AODV) was proposed to help remedy this issue.
The idea of LS-AODV was derived from the observation that routing pathways were being
created as data traveled from source to destination in a mesh network. These pathways were
then exploited to determine the path of highest energy reserve. Once found, the sending and
receiving nodes communicate along this pathway, helping distribute the energy consumption
of the network more equally, and therefore extending the network lifetime. A conference
paper was written for this algorithm and accepted to IEEE 12th Annual Information Tech-
nology, Electronics and Mobile Communication Conference 2021.

6.2 Algorithm Development

6.2.1 Ad-Hoc On-Demand Distance Vector

In MANETS, constantly maintain routing information can drain a devices resources and
battery life. In AODV, routing information is not kept fresh, in that maintenance message
are not used to ensure a route still exists. This can be both good and bad. For energy
constrained devices, this helps to save energy from constant radio transmission and allows
longer sleeping periods. However, if the network requires real-time, or close to real-time re-
sponsiveness this lack of maintenance can cause delays that are unacceptable. Since WSNs
and MANETS are typically more concerned with energy conservation this is a safe algorithm,
despite the slower response [1].

When first beginning a transmission, a node must find a path to the network sink. Typ-
ically, this will cause a node to look through its routing table to find an entry for the
destination node, and a resulting neighbor will be identified as the next hop to get there.
However, if no entry exists the node will enter an route discovery phase, which begins the
process of finding the destination node. This source node will begin by transmitting route
request messages (RREQs) to all its neighbors. The node’s neighbors in turn, check their
routing tables for an entry to the requested destination. If a neighbor has an entry and it
is considered fresh enough, the neighbor replies with a route reply (RREP) message back to
the source node. This response message is then received by the source and it stores the new
routing information in its routing table. Conversely, if none of the neighbors contain routing
information to reach the requested destination node, they will also broadcast RREQs to their
neighbors to try to obtain the routing information. This process continues until either the
destination node is reached, or a node that has a fresh entry to the destination. In addition,

49

every node that receives a RREQ also stores a route to the source node in its routing table.

RREPs are handled using unicast, a single point-to-point transmission from one node to
another. Once a route is determined by the destination node or one with a fresh route, a
RREP is generated and transmitted to the neighbor through which the RREQ was received.
In the case of many RREQs reaching a single node, the first RREQ is generally responded to
with a RREP. Since a fresh route then exists after the first RREQ to the source, all others are
dropped. The same is the case when RREQs are being rebroadcasted, and neighbors receive
each other’s RREQs from the same source. The RREQ sequence numbers and hop count
are used to keep these packets from causing infinite rebroadcasts throughout the network.

Routing errors also handled dynamically, so a source node can delete its current rout-
ing information to a destination and begin the route discovery phase again. A route error
(RERR) packet is generated once a node knows a path to a destination no longer exists.
This packet is then sent back up the stream of nodes until it reaches the original source node

1].

6.2.2 Energy Aware-AODV (EA-AODV)

The AODV algorithm has not awareness of energy levels of nodes in a network, let alone make
routing decisions based on it. In the paper titled “Energy Aware AODV (EA-AODV) Using
Variable Range Transmission”, Nayek et al. [2] introduced an extension on AODV that takes
into account the transmission distance between nodes and adjusting transmission power as
a way to save energy. The algorithm is broken down into several steps for transmission:

1. When a source node needs to send data and doesn’t have routing information to des-
tination, it broadcasts a RREQ with a transmission distance of 250 m (based on Friis
free-space equation).

2. RREP messages contain two fields, locX and locY, that contain the Cartesian coordi-
nates of the sending node.

3. Upon reception of a RREP, a node must wait T, to receive all RREP that are
destined for it.

4. Once T4 has elapsed, the node calculates the distances to each neighbors it has
received a RREP for a certain source and destination, it chooses the neighbor with the
shortest distance to store as the next-hop node for the routing table entry used for the
destination.

5. The routing table entry is also updated with the shortest-distance neighbor’s X and Y
position: npepx and npepy -

6. The transmission power of the node receiving the RREP is set based on the distance
to closest neighbor using the Friis free-space loss equation. The threshold of received
power is set constant based on wireless protocol.

50

7. The source to destination route is maintained for data transmission.

8. If a broken route occurs, repeat from step 1.

6.2.3 Need for Energy Balancing

The problem with EA-AODV is that it looks at energy savings from a per-node perspective.
This doesn’t allow network-wide routing to be changed based on energy consumption in cer-
tain areas. To remedy this problem, LS-AODV was devised. LS-AODV aims to distribute
energy consumption more evenly throughout the network by identifying energy pathways. In
AODV certain routing paths are determined by the distribution of RREQ messages. When
a neighbor that has already received a RREQ with the same sequence number, source ad-
dress and a greater or equal hop count, the packet is dropped. This creates distinct routing
paths from source to destination. However, in AODV, the first RREP message to reach the
originating node is the next-hop neighbor chosen for transmissions. With LS-AODV, the
paths created by the RREQ), such as the ones shown in figure 49.

—Q@—_

o

Figure 49: Potential Route Request Paths to Destination.

The algorithm is device as such:

1. RREQ messages contain a energy accumulation field that contains a 32-bit floating-
point value, and a current node enerqgy level.

2. Anytime a RREQ is encountered by a node that contains a routing table entry for the
originator:

51

(a) with a sequence number greater than the one currently stored: the current node’s
energy level is added to the RREQ’s energy accumulation field and placed in the
current node energy level field before processing and forwarding.

(b) with an equal or lesser sequence number: the RREQ is dropped.

(c) updates its neighbor’s energy level stored in its routing table in the entry for that
neighbor.

3. Nodes originating a RREQ insert only is own energy level in the the energy accumu-
lation field and the current node energy level field.

4. When a node receives a RREQ that is destined for it, the node saves the RREQ and
waits T4 for additional RREQs to reach it.

5. After T, has elapsed the node calculates the average energy per node by dividing the
energy accumulation field of each RREQ by the RREQ hop count plus 1. The RREQ
that results in the highest average energy per node is the one chosen for the RREP
message response.

6. Similarly to EA-AODV, RREPs contain a node’s X and Y coordinates. In addition,
RREQs also contain a transmitting node’s X and Y coordinates. These coordinates
are stored in the routing table data for source and destination nodes.

7. All transmitted packets are sent by adjusting antenna transmission power to the dis-
tance based on the X and Y coordinates stored in the routing table using the Friis
Free-Space equation and a minimum receive power of

As an example, the same network topology was used from figure 49. Each node is given
the initial energy of the values from table 5

Node Number | Initial Energy at time RREQ is received (J)
1 87

59

27

80

54

34

7

23

64

OO0 | O U =| W N

Table 5: Initial Energy of Nodes in Joules.

Figure 50 shows node S broadcasting a RREQ to reach node D. Similar to AODV, nodes
that do not have a routing table entry for device D will also broadcast RREQ messages to
their neighbors. These nodes will also store an entry for S along with its coordinates and

52

current energy level. Nodes 1, 2, 3, 8 and 9 that receive the first RREQ will then broadcast
another RREQ with the same originator sequence number and address, but now with their
own energy value added to the RREQ accumulated energy field.

o o
@ °. o||® el
wes,

o o\ o m\o
RRF_Q"‘“-
o / RREC o y :
//o
o o-/RREQ

\o o °
R \
€ \. © o
© O o (-]
S O | ©
Q@ (2)

Figure 50: RREQs broadcasted from Node S toward Node D.

RREQ propagation occurs identically to AODV, with the addition of each node adding
its own energy level to the two fields of the RREQ packet. Once node D receives the first
RREQ from S it will start a timer for the specific sequence number and source address
combination. Assuming that node 6 obtains the RREQ from 3 first, 5 from 2 first, and 4
from 1 first, then 7 from 4 very shortly afterward, three distinct routing paths shown in
figure 49 will exist. The RREQ received at D from 6 will contain an accumulated energy
value of 27 + 34 = 61 J while hopping from §—3—6—D. The accumulated energy from 5’s
RREQ propagating through S—2—5—D would be 59 + 54 = 113 J and from 7 through
S—1—4—7—D would be 87 + 80 + 77 = 244 J.

Once D receives all of the RREQs, it will take these values and divide by the RREQ hop
count to determine the average energy level per node encountered up until that point. For
RREQs received through 6, 5 and 7 the average node energy would be 30.5, 56.5 and 112,
respectively. Node D will chose the path back to S through node 7 as the average energy
per node is higher, despite the fact that the hop count is greater and most likely took longer
to be received than the other RREQs (Figure 51). This return path for RREPs determines

53

the route in which S will transmit to D for future transmissions.

RREP ° e

RREP a

RREP

RREP

Figure 51: RREP Return Path from D to S.

Lastly, both the RREQ packets and the RREP packets contain the X and Y coordinates
of the sending node. These coordinates are stored as part of a routing table entry for each
node’s neighbor. Energy savings occur for all unicasted messages (RREP, RERR and data
transmission) in LS-AODV by reducing transmission power to just reach the node which
the packet is destined for. Broadcasted messages (RREQs) are set to a default transmission
range since RREQs are potentially used for the discovery of new neighbors in MANETS.

6.3 Simulation

6.3.1 NS-3

Simulations for LS-AODV, EA-AODV and AODV were performed in ns-3, a discrete-event
driven network simulator [16]. ns-3 has been used for research and academic purposes and
is capable of handling wireless and traditional networking interfaces.

6.3.2 Energy Model

A simple energy model was created based in each routing algorithm to aid in monitor-
ing energy consumption. ns-3 already contains a more complex energy model with energy

54

harvesting and specific battery types, however, they require device current to be known.
However a simpler energy model that was integrated into the routing protocol was used.

Each routing protocol was modified with an variable for energy level in Joules and made
accessible using the ns-3 Attribute System. This allows modules in different levels of the
compilation hierarchy to be accessible to each other.

Wireless sensor devices have several sources that can deplete battery life [17]:

1. Wireless transceiver receive (RX) energy
2. Wireless transceiver transmission (TX) energy

3. CPU Active energy

Each one of these components will need to be considered for a proper working energy model.

Since all wireless microcontrollers (MCUs) have different power ratings and current con-
sumptions based on the type of MCU, the wireless protocol and the various sleeping modes,
a single MCU should be chosen based on some previously known factors. In ns-3, the al-
gorithm that the energy model was installed onto was the Ad-Hoc On-Demand Distance
Vector (AODV) algorithm. This routing model uses WiFi protocol for wireless transmis-
sion. Knowing this, the MCU that was chosen was the ESP32-WROOM32 device for its
low-power WiFi transmission capabilities (Figure 52). This MCU was also very prolific in
terms of WSN connectivity with WiFi protocol.

Figure 52: ESP32-WROOM-32 Embedded Wireless MCU.

For this device, the CPU and transceiver power characteristics were obtained from the
ESP32 datasheet on Espressif’s website [18]. In Table 15 of the datasheet, the TX and
RX current for the ESP32 device for the IEEE 802.11b protocol was 240 mA and 97.5 mA
respectively, including CPU contributions. In Table 6, the CPU current consumption when
in Modem-Sleep mode (without RF) is on average 22.5 mA for the single-core at 80 MHz.
For this project, only the active mode was considered for the sake of simplicity. It was
mentioned in the note below the table that the ESP32 switches between Active mode (with
RF from Table 15) and Modem-Sleep mode. Since we will be assuming the transceiver will
be constantly on for receiving incoming data, the contribution of just the wireless hardware

55

had to be found. This was done by taking the Modem-Sleep current usage out of the total
current draw when the receiver is on [18]:

IRX = Itotal - [Modemfsleep

So the RX current for this protocol was found to be on average 75 mA. This along with
the active, modem-sleep mode was used to determine the current expenditure while receiv-
ing. Wireless transmissions could have been handled in two different ways: use the datasheet
values for transmission with a set propagation distance, or use a variable propagation dis-
tance model using standards for IEEE 802.11b. This project followed the latter option using
the energy model from [2] and the Friis propagation loss equation.

Frits Propagation Loss Equation

For some applications, adjusting transmission range can help reduce energy consumption
when sending data. To facilitate this feature, the Friis transmission equation can be used,
assuming free-space propagation, to determine power usage based on transmission distance:

RPG,G)\?
N "

Where P, and P, are respective power of the RX and TX, G, and G, are the respective
gains of the RX and TX antenna, A is the wavelength in meters, and d is the distance be-
tween the sender and receiver in meters [19].

In equation 11, the respective antenna gains can be assumed to be unity for simple,
low-power MCUs and the equation can be rearranged to find the TX power:

P, (47d)?
p, = iz

The TEEE 802.11b MAC protocol standard sets a ceiling to the minimum RX sensitivity
level of -76 dBm, however chip manufacturers can specify less than this level as long as the
frame error ratio (FER) does not fall below 0.08 for 1024 bytes [20]. The ESP32 device
has its own sensitivity level for receiving data of -98 dBm for the 802.11b standard with
1 Mbps [18]. This value was used as the RX power, P, to maximize energy savings by
reducing needed output power to a minimum. In addition, the wavelength for WiF'i protocol
at 2.4 GHz can be found using:

¢ __ 2998x10% m/s __
A= % = ST . [I"Zs =10.125 m

Resulting in a power equation of:

(12)

—98—-30

10~ 10 - 1672
0.1252

P, = -d*=1.6018 x 1077 - d? (13)

56

However, this equation was in units of power, not energy. So to deplete a battery source,
the power equation had to be translated to energy. To do so, the bit transfer rate of 1 Mbps
was used to help determine the time it takes to transmit data of a certain length:

_ ## bits
1 x 106 bps
Equation 14 shows the energy usage for a single transmission of a certain number of bits at

a variable distance. So within the ns-3 code, the value 1.6018 x 1071°- (#bits) was saved as a
constant within the routing protocol code, as the packet size in bits was known ahead of time.

E, P, =|1.6018 x 107" - (# bits) - d* (14)

For depletion of active CPU and RX energy, the current consumption was used as well
as the ESP32 input voltage for Vpp, which was 3.3 V, to find power:

P=1Vv

This power value can then be used to find energy consumption of a battery in a similar
way as the TX energy usage:

E =Pt (15)

Where ¢ is time in seconds. The current values for RX (75 mA) and active CPU (22.5 mA)
were included as constant values in the routing protocol in ns-3. As well, a periodic battery
decay function was implemented and executed every 2 ms to decrement the battery energy.
These calculations were used while programming each routing protocol, as shown in the next
section.

6.4 Implementation

To incorporate a working energy model in an existing routing algorithm in ns-3, the rout-
ing protocol needs to be modified. The AODV routing protocol is located in the {NS3_-
HOME}/src- /aodv/model. Within this directory both the aodv-routing-protocol.cc and
aodv-routi- ng-protocol.h were modified.

Routing Protocol Header

In the top of the routing protocol header, two constants were defined above the class
definition:

#define PACKET_SIZE 64
#define ESP32_VOLTAGE 3.3f

These were declared above the class to allow global access to the values. Next, within
the RoutingProtocol class, the following static variables were included:

57

static const float power_receive;
static const float power_active;
static const float m_aliveThreshold;
static const double TxConst;

These variables were the ones discussed previously, along with an alive threshold which
indicates the minimum energy level a node can have while still being considered “alive”. All
of these variables were declared as static constants because they were the same for all nodes
and only one instance of these variables for all RoutingProtocol objects was more efficient
for the simulation workload.

Declared in the public access of the class were included:

double m_energylLevel;
double transDistance;
Ipv4Address ipv4Addr;

These were used for the device energy level and the transmission distance set by the sim-
ulator, plus the node’s IPv4 address. A decay function needed to be called periodically to
simulate active CPU current and RX transceiver current load on the battery. An ns-3 Timer
object, along with a timer callback function were declared in the private access to facilitate
this:

Timer m_powerDecayTimer;
void PowerDecayTimerExpire();

Routing Protocol Source Code

Next within the aodv-routing-protocol.cc source code file, in the top of the aodv
namespace, the energy model constants were initialized using:

const float RoutingProtocol::power_receive = 0.075 * ESP32_VOLTAGE;

const float RoutingProtocol::power_active = 0.0225 * ESP32_VOLTAGE;

const float RoutingProtocol::m_aliveThreshold = 0.001;

const double RoutingProtocol::TxConst=(double) (PACKET_SIZE*8)/le6 * 1.601768e-9;

These values were determined in the Theoretical Background using the ESP32 datasheet
and verified to be part of the IEEE 802.11b standard [18, 20]. The power_receive and
power_active were set to values determined above multiplied by the ESP32 system voltage.
The m_aliveThreshold value was set to 0.001 as a low, non-zero value that can mark the
expiration of a node’s battery. As well, the TxConst was initialized as the value shown in
Equation 14. PACKET_SIZE was multiplied by 8 as it was in terms of bytes, not bits.

Next, in the RoutingProtocol constructor, default values for the energy level and trans-
mission distance were placed in the initialization list:

58

RoutingProtocol: :RoutingProtocol ()

m_energyLevel (1000.0),
transDistance(250.0),

{...};

This sets the default energy level to 1000 J and default transmission distance to 250 m
(which is the default transmission distance of a node with the Friis Propagation Loss Model
installed in ns-3). These values are not modified in the constructor argument list because
ns-3 has an alternative means to modify object variables across models without objects need-
ing to be aware of specific object types nor need them to be in scope. This is accomplished
using the ns-3 Attribute System, which exposes attributes connected directly to object fields.
These object variables can be changed by using simulator commands that modify the vari-
ables at the simulator level. To enable this feature, the variables plus accessor types need
to be included in the GetTypeld function. This function sets the namespace, group name
necessary for accessing the attributes, and the attributes themselves. At the end of the list of
AddAttribute dot operations, another two were added for the energy level and transmission
distance:

Typeld
RoutingProtocol: :GetTypelId (void)
{
static Typeld tid = TypeIld ("ns3::ebaodv::RoutingProtocol")
.SetParent<Ipv4RoutingProtocol> ()
.SetGroupName ("ebaodv")
.AddConstructor<RoutingProtocol> ()
.AddAttribute ("HelloInterval", "HELLO messages emission interval.",

.AddAttribute ("MaxPower",
"Maximum battery power of a node",
DoubleValue(1000) ,
MakeDoubleAccessor (&RoutingProtocol::m_energylLevel),
MakeDoubleChecker<double> ())

.AddAttribute ("TransDistance",
"Transmission Distance for AODV algroithm",
DoubleValue(250),
MakeDoubleAccessor (&RoutingProtocol::transDistance),
MakeDoubleChecker<double> ())

The last two AddAttribute dot operations made the m_energylLevel and transDis-
tance variables accessible through the MaxPower and TransDistance attribute names. The
first argument is a string with the attribute name, the next argument is a description of
the attribute. ns-8 also uses its own casting for primitives, so the default values for each
attribute is passed through a DoubleValue. Then the configuration path to each variable
was given in MakeDoubleAccessor for the simulator to access. Then the last argument was

59

a checker object for the double value: MakeDoubleChecker<double>. This addition made
both variables visible to the main simulation function for customization.

The next modification is in the DoDispose function, which functions as a destructor for
the RoutingProtocol object. ns-3 has its own Object class from which all objects are in-
herited. This base Object maintains its own garbage-collection at the end of a simulation,
so if things need to be done at the end of a simulation when an Object is terminated, those
things need to be placed in the DoDispose class method. In this class, a simple output state-
ment is used to indicate how much energy the node has left. So at the top of the function
this was placed:

if (m_energyLevel >= m_aliveThreshold) {
std::cout<<"Node "<<ipv4Addr<<" has "<<m_energyLevel<<" remaining energy."<<std::end

}

where ipv4Addr is the node’s [Pv4 address. This statement only prints when the node is
still alive, hence the condition: m_energyLevel >= m_aliveThreshold. Later in the code a
statement was placed for indicating when a node’s battery expires.

The next function modified was the RoutingProtocol: :Start (). This function is called
when a RoutingProtocol instance is created and installed on a node. Rate limit timers
were set in this function to limit the number of route requests (RREQs) and route replies
(RREPs) a node sends out. This helps to limit congestion caused by route discovery in a
network. At the end of the function these lines were inserted:

m_powerDecayTimer.SetFunction (&RoutingProtocol::PowerDecayTimerExpire, this);
m_powerDecayTimer.Schedule(MilliSeconds(2));

ipv4Addr = m_ipv4->GetAddress (1, 0).GetLocal ();

std::cout<<"Node created "<<ipv4Addr<<" with initial power "<<m_energylLevel<<std::endl;

This code segment uses the m_powerDecayTimer timer object and creates a periodic call-
back to the PowerDecayTimerExpire function to decay the node’s energy level every 2 ms.
As well, ipv4Addr was initialized with the node’s IPv4 address using the routing protocol’s
IPv4 protocol object. Then an output statement was used to output the node address and
starting energy level.

To keep the node disabled when the energy level is equal to or below the alive threshold,
conditional blocks were placed at the beginning of several functions:

if (m_energylLevel <= m_aliveThreshold) return;

This statement was placed in the top of the RouteInput (), RouteQutput() and Recv-
Aodv() functions. This was because both RouteInput() and RouteOutput() are entry
points to the routing protocol from the application layer. Also, the RecvAodv () is called
whenever a route discovery is initiated by the current node or a another node. So placing a

60

conditional check at the top of this function keeps the current node from participating in a
route discovery when the node’s battery is dead.

The PowerDecayTimerExpire () function was included just under the RerrRateLimitTi-
merExpire() function. This was the function that decays the batter every 2 ms based on
the active CPU power and RX power:

void RoutingProtocol::PowerDecayTimerExpire() {

m_energyLevel -= (power_active+power_receive)*0.002;

if (m_energyLevel < m_aliveThreshold) {
std: :cout<<"Node "<<ipv4Addr<<" died at time "\

<<Simulator: :Now() .GetMilliSeconds ()<<"ms."<<std: :endl;

m_powerDecayTimer.Cancel() ;

} else {
m_powerDecayTimer.Schedule(MilliSeconds(2));

}

The first instruction decrements the energy level based on the active power and RX power
based on Equation 15 using 2 ms as the time duration. The conditional block checks if the
node had just died in the current decay function call. If so, an output statement is used
to tell the user that this node’s battery has expired. As well, the timer itself is canceled
since it is no longer needed. Otherwise if the node still has remaining energy, the timer is
reset to 2 ms using m_powerDecayTimer.Schedule(MilliSeconds(2)). This takes care of
the periodic energy decay of the battery.

The last part of the energy model is to emulate TX power decay. This is not done as
simply as the RX and active CPU power decay as there are many places in the routing
protocol and application layer that a transmission can occur. For the case of the routing
protocol there are generally two places to decay TX power: in the SendTo() function, and
every instance of socket->SendTo(). Within the RoutingProtocol: :SendTo() a decre-
ment statement was added:

void
RoutingProtocol: :SendTo (Ptr<Socket> socket, Ptr<Packet> packet, Ipv4Address destination
{

// Energy Model

m_energyLevel -= TxConst * powf (transDistance,2);

socket->SendTo (packet, 0, InetSocketAddress (destination, EB_AODV_PORT));

The m_energyLevel operation was the addition to this function, where the energy level
was reduced by the amount determined from Equation 14, since TxConst already takes into
account the number of bits. The transmission distance was squared using the powf C++
standard floating point exponent function, so <cmath> was also added to the source code
libraries.

61

Next, every instance of socket->SendTo() in the aodv-routing-protocol.cc file had
to have the same line added before all of them as well:

m_energyLevel -= TxConst * powf (transDistance,2);

This was done using the Vim text editor’s search function.

The difference between these two types of sending functions is the fact that some functions
needed an indirect call to the RoutingProtocol: :SendTo () function using a Simulator: :Sc-
hedule (), which schedules the send function to run in the future. This can allow a small
delay before executing the transmission by adding some jitter in transmission, like in real
systems where queuing delays, operating system event management, or other phenomenon
might delay the transmission temporarily. However, calling socket->SendTo () invokes the
socket to send the data immediately with no delay.

These changes to the routing protocol included all battery decay elements: RX power, TX
power and CPU active power and output statements to show when these operations occurred.

This new energy model was used to perform energy simulation of the LS-AODV, EA-
AODV and AODV algorithms for comparison of energy savings, and network lifetime max-
imization. All source code created for this algorithm is listed in Appendix B.

6.5 Simulation and Results

Three network sizes were used during testing: 50, 75, and 100 nodes. For each of these three
sizes, each node was randomly assigned using a normal distribution with a mean of 125 and
standard deviation of 50. Each topology enclosed in a 250m x 250m square, where (125,125)
was its center. Figure 53 shows the 100 node topology.

62

250

200

150

Y Coordinate
.

50

X Coordinate

Figure 53: 100 node topology

Packet size was assigned as 4096 bytes and injection rates were adjusted for each sim-
ulation to 1, 2, 5, and 10 packets per second. Destinations of each packet were randomly
selected. Each RREQ, RREP and RERR were 64 bytes. The 12 combinations of simula-
tions with each combination of network size and injection rate were tested on LS-AODV and
EA-AODYV for comparison.

The energy model above using the ESP32 device as a reference was used to measure energy
on each node. To start, each node bagin with 100 joules of energy, and each simulation ran for
10 simulated seconds. Nodes subtracted from their energy level based on transmission power,
receiving power, and idle waiting. When a node reaches zero power, it was considered dead
and no longer transmits nor participates in other node’s route discovery. If a node cannot
reach any other nodes due to all of its neighbors having died, it is considered unreachable.

Table 6 shows the remaining amount of energy in each simulation for both EA-AODV

63

and LS-AODV.

Nodes and In- | Energy Remain- | Energy Remain- | % More Energy
jection Rate ing(J) EA-AODV | ing(J) LS-AODV | Remaining in LS-
AODV

50, 1pps 3287.97 3190.36 -2.97

50, 2pps 2401.02 2940.24 22.46

50, Spps 1613.94 17.43.07 8.00

50, 10pps 882.22 1179.92 33.75

75, 1pps 4245.48 4603.86 8.44

75, 2pps 3142.97 3441.26 9.50

75, dpps 1557.52 2026.99 30.14

75, 10pps 1098.51 1377.25 25.37

100, 1pps 1785.94 2396.61 34.19

100, 2pps 4253.51 4443.51 4.47

100, 5pps 2361.38 3081.83 30.51

100, 10pps 2103.09 2523.06 19.97

Table 6: Energy Remaining in Networks.

Eleven of the twelve configurations show LS-AODYV finishing with a higher amount of en-
ergy remaining in the network when compared to EA-AODV. Only the 50 node, 1 packet per
second simulation shows more energy remaining in the EA-AODV network, with LS-AODV
with 3% less energy. For the remaining twelve, most LS-AODV networks have a double
digit percentage points improvement, with a best performance in the 100 node, 1 packet per
second network improving by 34.19%. Figure 54 shows the results of the 100 node 1 pps
simulation for EA-AODV, and figure 55 shows the results for 100 node 1 pps in LS-AODV.

64

Y Coordinate

250

200

150

100

50

]

. .
L]
-
.
. Gl
-
. b . .
L) .
<]
= . -
. . - .
L] L]
-
. . tad) .
. * .
L] L]
L]
. L
-
-
.
= * . ® .
L] L] .
® % L. . & .
L]
® 2 -
L]
.
.
L -
-
. . i
. H
-
- -
= .
.
. . .
.
L]
.
50 100 150 200

X Coordinate

Figure 54: 100 Nodes 1 PPS EA-AODV Simulation

65

250

power

100

80

60

40

20

250
ower
. 100

. .
L]
.
.
200 =
.
® . 80
-
. b 0 .
L) .
<]
L] i - -
. L . .
L] L]
.
c . .
150 > . . ~
. . . 60
L]
it} - » . : *
= L]
g : . s
B .
5 . L]
8 = . . ® .
> S
. L]
.
100 - . 40
L]
L .
8
.
- -
50 . - 20
L] L -
.
L]
.
0 0
0 50 100 150 200 250

X Coordinate

Figure 55: 100 Nodes 1 PPS LS-AODV Simulation

Table 7 shows the number of nodes remaining at the end of simulation that are still
reachable. All twelve simulations show LS-AODV completing with more nodes still reach-
able than compared to EA-AODV.

66

Nodes and In- | EA-AODV LS-AODV Number More
jection Rate Nodes Reachable
in LS-AODV
50, 1pps 45 47 2
50, 2pps 36 43 7
00, 5pps 26 28 2
50, 10pps 18 22 4
75, 1pps 61 69 8
75, 2pps 51 58 7
75, Hpps 32 37 5
75, 10pps 24 31 7
100, 1pps 38 47 9
100, 2pps 69 73 4
100, 5pps 44 54 10
100, 10pps 39 51 12

Table 7: Number of Remaining Nodes in Networks.

Simulations show clear improvement in LS-AODV over EA-AODV as the network be-
comes larger and more congested. Network lifetime is used as a criteria to measure distribu-
tion of energy consumption more evenly through a network. The results of the simulations
show that more nodes remained reachable in LS-AODV when compared to EA-AODV, and
more reachable nodes means greater longevity of the battery-operated network.

67

O~ Uk WN -

Appendix A

SM14 and Bulldog Mote Firmware

ALS Sensor Firmware

als-sensor.h

~
* X X X X X X X K K K K K X X X X X X X X X K K K X X ¥ X x

*
~

Copyright (c) 2013, ADVANSEE - http://www.advansee.com/
Benot Thbaudeau <benoit.thebaudeau®@advansee.com>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
¢¢AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

VTS

* X X X X X X X K K X X X X*

\addtogroup cc2538-bulldogVl-sensors
e{

\defgroup bulldogVi-als-sensor BulldogVl ALS Driver

Driver for the BulldogVl ALS sensor
o{

\file

Header file for the bulldogVl ALS Driver. Simple driver to tell ambient
lighting in a room. Converts ADC value for photoresistor into value from 0-100
where O represents a dark room with poor light, and 100 represents brightly
lit room.

Eqgn:

* ALS Val = ADC * (-1/160) + 106.25

*/

#ifndef ALS_SENSOR_H_
#define ALS_SENSOR_H_

#include "lib/sensors.h"

/*

*/

/** \name ALS sensor

68

© 00~ U WN -

* Qf

*/

#define ALS_SENSOR "ALS"
/*% @} */

extern const struct sensors_sensor als_sensor;
#endif /* ALS_SENSOR_H_ */

/**

* Q}

* @}
*/

als-sensor.c

~
*

Copyright (c) 2013, ADVANSEE - http://www.advansee.com/
Benot Thbaudeau <benoit.thebaudeau@advansee.com>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
¢¢AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

O K X X X X X X X X K K K K K X X X X X X X X X X ¥ X ¥

*
~

/%%

* \addtogroup bulldogVl ALS sensor
* 0{

*

* \file

* Driver for the BulldobV1l ALS
*/

#include "contiki.h"

#include "sys/clock.h"

#include "dev/ioc.h"

#include "dev/gpio.h"

#include "dev/adc.h"

#include "dev/als-sensor.h"

#include <stdint.h>
#define ADC_ALS_PWR_PORT_BASE GPIO_PORT_TO_BASE(ADC_5V_PWR_EN_PORT)

#define ADC_ALS_PWR_PORT ADC_5V_PWR_EN_PORT
#define ADC_ALS_PWR_PIN_MASK GPIO_PIN_MASK(ADC_5V_PWR_EN_PIN)

69

102
103
104
105
106
107
108
109
110
111
112
113

#define ADC_ALS_PWR_PIN ADC_5V_PWR_EN_PIN
#define ADC_ALS_OUT_PIN_MASK GPIO_PIN_MASK(ADC_ALS_OUT_PIN)

// Analog sensors need many samples of readings, choose numbers of samples

// to be a power of 2 to use shifting instead of division for averaging
#define ADC_SAMPLES 128

#define ADC_LOG_2_SAMPLES 7

Y T et et e T
static int

value(int type)

{

uint8_t channel = SOC_ADC_ADCCON_CH_AINO + ADC_ALS_QOUT_PIN;

int16_t res=0;
int32_t res2 = 0;

uint8_t i = 0;
while (i < ADC_SAMPLES) {

st
co

{

st
st
{

res = adc_get(channel, SOC_ADC_ADCCON_REF_AVDD5, SOC_ADC_ADCCON_DIV_512);
res2 += (res & 0x2000) ? (res | OxFFFFF000) : res;
i++;
}
res2 = res2 >> ADC_LOG_2_SAMPLES;
//res = adc_get(channel, SOC_ADC_ADCCON_REF_AVDD5, SOC_ADC_ADCCON_DIV_512);
// need sign extension
return res2;

atic int
nfigure(int type, int value)

switch(type) {

case SENSORS_HW_INIT:
GPIO_SOFTWARE_CONTROL (ADC_ALS_PWR_PORT_BASE, ADC_ALS_PWR_PIN_MASK);
GPIO_SET_OUTPUT (ADC_ALS_PWR_PORT_BASE, ADC_ALS_PWR_PIN_MASK);
GPIO_CLR_PIN(ADC_ALS_PWR_PORT_BASE, ADC_ALS_PWR_PIN_MASK) ;
ioc_set_over (ADC_ALS_PWR_PORT, ADC_ALS_PWR_PIN, IOC_OVERRIDE_DIS);

GPIO_SOFTWARE_CONTROL (GPIO_A_BASE, ADC_ALS_OUT_PIN_MASK);
GPIO_SET_INPUT(GPIO_A_BASE, ADC_ALS_OUT_PIN_MASK) ;
ioc_set_over (GPIO_A_NUM, ADC_ALS_OUT_PIN, IOC_OVERRIDE_ANA);

break;
case SENSORS_ACTIVE:
if (value == 1) {
// turn on PWR pin for ADC
GPIO_SET_PIN(ADC_ALS_PWR_PORT_BASE, ADC_ALS_PWR_PIN_MASK);
} else if (value == 0) {
// turn off PWR pin for ADC
GPIO_CLR_PIN(ADC_ALS_PWR_PORT_BASE, ADC_ALS_PWR_PIN_MASK) ;
}

break;

atic int
atus(int type)

return 1;

SENSORS_SENSOR (als_sensor, ALS_SENSOR, value, configure, status);

/*

* @} */

70

0Tk WN -

0O~ O Ut W

—_
o ©

11

—_
[\

BMP280 Sensor Firmware

bmp280.h

#define BMP280_ADDR 0x76

#define BMP280_REG_CHIP_ID 0xDO
#define BMP280_REG_RESET OxEO
#define BMP280_REG_STATUS OxF3
#define BMP280_REG_CONTROL OxF4
#define BMP280_REG_CONFIG OxF5
#define BMP280_REG_DATA OxF7
#define BMP280_CHIP_ID 0x58
#define BMP280_REG_T1 0x88
#define BMP280_REG_T2 0x8A
#define BMP280_REG_T3 0x8C
#define BMP280_REG_P1 Ox8E
#define BMP280_REG_P2 0x90
#define BMP280_REG_P3 0x92
#define BMP280_REG_P4 0x94
#define BMP280_REG_P5 0x96
#define BMP280_REG_P6 0x98
#define BMP280_REG_P7 0x9A
#define BMP280_REG_P8 0x9C
#define BMP280_REG_P9 0x9E
#define BMP280_RESET_VAL 0xB6

enum {
BMP280_TEMP_READ,
BMP280_PRESS_READ
I8

typedef struct BMP280_CALIBRATION_DATA {
uint16_t dig_T1;
int16_t dig_T2;
int16_t dig_T3;
uintl6_t dig_P1;
int16_t dig_P2;
int16_t dig_P3;
int16_t dig_P4;
int16_t dig_P5;
intl16_t dig_P6;
int16_t dig_P7;
intl16_t dig_P8;
int16_t dig_P9;
} BMP280_CALIBRATION_DATA;

uint8_t bmp280_init(uint8_t mode);

uint8_t bmp280_read(uint8_t type, int32_t *temperature, uint32_t *pressure);

bmp280.c

#include "contiki.h"
#include "sys/timer.h"
#include "bmp280.h"
#include "dev/board-i2c.h"

#define BMP280_STANDBY_TIME 250 // in microseconds
BMP280_CALIBRATION_DATA calib;
int bmp280_check_id() {

uint8_t chipID;
board_i2c_read (BMP280_ADDR,BMP280_REG_CHIP_ID,&chipID,1);

71

if (chipID == BMP280_CHIP_ID) return O;
else return 1;

}

int bmp280_reset_chip() {

return board_i2c_write (BMP280_ADDR,BMP280_REG_RESET,BMP280_RESET_VAL) ;

}

int bmp280_read_status(uint8_t *status) {

return board_i2c_read (BMP280_ADDR,BMP280_REG_STATUS,status,1);

}

int bmp280_read_calib_data() {
if (

board_i2c_read16 (BMP280_ADDR,BMP280_REG_T1, &calib.dig_T1) ||

board_i2c_read16 (BMP280_ADDR,BMP280_REG_T2, (uint16_t *) &calib.
board_i2c_read16 (BMP280_ADDR,BMP280_REG_T3, (uint16_t *) &calib.
board_i2c_read16 (BMP280_ADDR,BMP280_REG_P1, &calib.dig_P1) ||

board_i2c_read16 (BMP280_ADDR,BMP280_REG_P2, (uint16_t
board_i2c_read16 (BMP280_ADDR,BMP280_REG_P3, (uint16_t
board_i2c_read16 (BMP280_ADDR,BMP280_REG_P4, (uint16_t
board_i2c_read16 (BMP280_ADDR,BMP280_REG_P5, (uint16_t
board_i2c_read16 (BMP280_ADDR,BMP280_REG_P6, (uint16_t
board_i2c_read16 (BMP280_ADDR,BMP280_REG_P7, (uint16_t
board_i2c_read16 (BMP280_ADDR,BMP280_REG_P8, (uint16_t
board_i2c_read16 (BMP280_ADDR,BMP280_REG_P9, (uint16_t

) return 1;
else return O;

}

int bmp280_configuration() {
uint8_t config = (3<<5); // 250 ms standby
config |= (0<<2); // IIR filter off
config |= 0; // disable SPI, want I2C instead

*)
*)
*)
*)
*)
*)
*)
*)

&calib.
&calib.
&calib.
&calib.
&calib.
&calib.
&calib.
&calib.

return board_i2c_write (BMP280_ADDR,BMP280_REG_CONFIG,config);

}

int bmp280_control() {
uint8_t ctrl = 3; // bll is normal mode
ctrl |= (3<<5); // temp oversampleing of 4x
ctrl |= (3<<2); // pressure oversampling of 4x

return board_i2c_write (BMP280_ADDR,BMP280_REG_CONTROL,ctrl) ;

}

uint8_t bmp280_init(uint8_t mode) {
if (board_i2c_init() || bmp280_check_id()
|| bmp280_reset_chip()) return 1;

// wait for power-on-reset and NVM data copy
while (1) {
uint8_t statusReg;

if (!bmp280_read_status(&statusReg) && ((statusReg & 1) == 0))

break;

}

if (
bmp280_read_calib_data() ||
bmp280_configuration() ||
bmp280_control ()

) return 1;

// wait for standby

for (int i = 0; i < 1000; i++) {
clock_delay_usec (BMP280_STANDBY_TIME) ;

}

return 0;

}

int bmp280_get_adc_vals(int32_t *adc_press,int32_t *adc_temp) {

72

dig_TQ)
dig_T3)

dig_P2)
dig_P3)
dig_P4)
dig_P5)
dig_P6)
dig_P7)
dig_P8)
dig_P9)

81 uint8_t datal[6];

82 int val = board_i2c_read(BMP280_ADDR,BMP280_REG_DATA,data,6);
83 *(adc_press) = data[0] << 12 | data[1] << 4 | data[2] >> 4;
84 *(adc_temp) = data[3] << 12 | data[4] << 4 | data[5] >> 4;

85 return val;

86 }

88 static void bmp280_compensate_temp(int32_t *fix_temp, int32_t *fine_temp, int32_t *adcTemp)
89 int32_t vi, v2;
90 int32_t adc_temp = *(adcTemp) ;

92 vl = ((((adc_temp>>3)-((int32_t)calib.dig_T1<<1)))*((int32_t)calib.dig_T2))>>11;

93 v2 = (((((adc_temp>>4)-((int32_t)calib.dig_T1))*((adc_temp>>4)-((int32_t)calib.dig_T1)))\
94 >>12)*((int32_t)calib.dig_T3))>>14;

95 if (fine_temp != NULL) *(fine_temp) = v1+v2;

96 *(fix_temp) = ((v1+v2)*5+128) >> 8;

97 %

98

99 static void bmp280_compensate_vals(int32_t *fix_temp, uint32_t *fix_press,
100 int32_t *adc_temp, int32_t *adc_press) {

101

102 int32_t fine_temp,vl,v2;

103 bmp280_compensate_temp(fix_temp,&fine_temp,adc_temp) ;
104 vl = (fine_temp >> 1) - (int32_t)64000;

105 v2 = (((v1>>2)*(v1>>2))>>11)*((int32_t)calib.dig_P6) ;
106 v2 = v2 + ((v1i*((int32_t)calib.dig_P5))<<1);
107 v2 = (v2>>2)+(((int32_t)calib.dig_P4)<<16);

108 vl = (((calib.dig_P3*(((v1>>2)*(v1>>2))>>13))>>3)+((((int32_t)calib.dig_P2)*
109 v1)>>1))>>18;

110 vl = ((((32768+v1))*((int32_t)calib.dig_P1))>>15);

111 if (vl == 0) {

112 *(fix_press) = 0;
113 return;
114 }

115 uint32_t p = (((uint32_t) (((int32_t)1048576)-* (adc_press))-(v2>>12)))*3125;
116 if (p < 0x80000000) p = (p << 1) / ((uint32_t)vi);

117 else p = (p / (uint32_t)v1)*2;

118 vl = (((int32_t)calib.dig_P9)*((int32_t) (((p>>3)*(p>>3))>>13)))>>12;

119 v2 = (((int32_t) (p>>2))*((int32_t)calib.dig_P8))>>13;

120 p = (uint32_t) ((int32_t)p+((vi+v2+calib.dig P7)>>4));

121 *(fix_press) = p;

122 return;

123}

124

125 uint8_t bmp280_read(uint8_t type, int32_t *temp, uint32_t *pressure) {
126 int32_t fix_temp,adc_press,adc_temp;

127 uint32_t fix_press;

128

129 //printf ("%d %d %d\n%d %d %d %d %d %d %d %d %d\n",calib.dig_T1,calib.dig_T2,
130 // calib.dig_T3,calib.dig_P1,calib.dig_P2,calib.dig_P3,calib.dig_P4,calib.dig_P5,
131 // calib.dig_P6,calib.dig_P7,calib.dig_P8,calib.dig_P9);

133 if (bmp280_get_adc_vals(&adc_press,&adc_temp)) return 1;
134 if (type == BMP280_TEMP_READ) {

135 bmp280_compensate_temp (&fix_temp,NULL,&adc_temp) ;

136 *temp = fix_temp;

137 } else {

138 bmp280_compensate_vals (&fix_temp,&fix_press,&adc_temp,&adc_press);
139 *pressure = fix_press;

140 }

141 return O;

142}

bmp280-sensor.h

1 /%

73

© 00O U W

#
#

#

e

#

Copyright (c) 2021, Copyright Calvin Jarrod Smith
A1l rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither the name of the Institute nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ¢ ‘AS IS’’ AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

*
*
*
*
*
*
*

This file is used in the Contiki software for the BMP280 temperature and

pressure sensor.

Author : Calvin Jarrod Smith, calvin.jarrod@gmail.com
Created : 2021-02-16
*/

ifndef BMP280_SENSOR_H_
define BMP280_SENSOR_H_

include "lib/sensors.h"
xtern const struct sensors_sensor bmp280_sensor;

endif /* BMP280_SENSOR_H_ */

bmp280-sensor.c

#
#
#
#
#

S
Vv

3

S
S

include "contiki.h"

include "lib/sensors.h"
include "dev/bmp280.h"
include "dev/bmp280-sensor.h"
include "dev/board-i2c.h"

tatic int
alue(int type) {
int32_t temp;
uint32_t press;

bmp280_read (type,&temp,&press) ;

if (type == BMP280_TEMP_READ) return (int)temp;

else if (type == BMP280_PRESS_READ) return (int)press;
else return O;

tatic int
tatus(int type) {
return O;

74

21
22
23

25
26
27
28
29

© 00~ U WN -

}
static int
configure(int type, int c) {
board_i2c_init();
return bmp280_init (type) ;
}

SENSORS_SENSOR (bmp280_sensor, "BMP280" ,value, configure,status) ;

Board Pinout Firmware

board.h

~
*

Copyright (c) 2012, Texas Instruments Incorporated - http://www.ti.com/
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
¢¢AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

O K X X X X X X X K K K K K X X X X X X X X X X X ¥ ¥

*/
/**

* \addtogroup bulldogV1i

* 0{

*

* \defgroup Bulldog Mote V1 and SM14Z2538 Board Peripherals

*

* Defines related to the Bulldog Mote V1 and SM14Z2538 Boards

*

* This file provides connectivity information on LEDs, Buttons, UART

*

* This file can be used as the basis to configure other platforms using the
* cc2538 SoC.

* @

*

* \file

* Header file with definitions related to the I/0 connections on the

* Bulldog Mote V1 and SM14Z2538 Development boards

*

* \note Do not include this file directly. It gets included by contiki-conf
* after all relevant directives have been set.

1)

51 */
52 #ifndef BOARD_H_
53 #define BOARD_H_

55 #include "dev/gpio.h"
56 #include "dev/nvic.h"

57 /*k-————- === === === === -——x/
58 /#* \name SmartRF LED configuration

59 *

60 * LEDs on the SM14Z2538 and BulldogVl (EB and BB) are connected as follows:

61 * - LED4 (Red) -> PC4

62 * - LED3 (Yellow) -> PC5

63 * - LED2 (Green) -> PC6

64 x - LED1 (Blue) -> PC7

65 *

66 * LED1 shares the same pin with the USB pullup

67 *x e

68 */

69 /*-———- === === === ——=x%/
70

71 #define LEDS_CONF_RED 1

72 #define LEDS_CONF_YELLOW 2

73 #define LEDS_CONF_GREEN 4

74 #define LEDS_CONF_BLUE 8

75 #define LEDS_CONF_ALL (LEDS_CONF_RED|LEDS_CONF_YELLOW|LEDS_CONF_GREEN | LEDS_CONF_BLUE)

77 #define LEDS_ARCH_L1_PORT GPIO_C_NUM
78 #define LEDS_ARCH_L1_PIN 4
79 #define LEDS_ARCH_L2_PORT GPIO_C_NUM
80 #define LEDS_ARCH_L2_PIN 5
81 #define LEDS_ARCH_L3_PORT GPIO_C_NUM
82 #define LEDS_ARCH_L3_PIN 6
83 #define LEDS_ARCH_L4_PORT GPIO_C_NUM
84 #define LEDS_ARCH_L4_PIN 7

85

86 #define LEDS_CONF_COUNT 4

87 /xx @} x/

88 /x-———- - - - - =%/
89 /**x \name USB configuration

90 =

91 * The USB pullup is driven by PCO and is shared with LED1

92 */

93 #define USB_PULLUP_PORT GPIO_C_NUM
94 #define USB_PULLUP_PIN 0O

95 /xx @} x/

96 /*k-———- === === === === -——x/
97 /** \name UART configuration

98 *

99 * - RX: PAO

100 * - TX: PA1

101 * - CTS: PBO (Can only be used with UART1)

102 * - RTS: PD3 (Can only be used with UART1)

103 =%

104 * We configure the port to use UARTO. To use UART1, replace UARTO_* with
105 * UART1_* below.

106 = of

107 */

108 #define UARTO_RX_PORT GPIO_A_NUM
109 #define UARTO_RX_PIN O

110

111 #define UARTO_TX_PORT GPIO_A_NUM
112 #define UARTO_TX_PIN 1

113

114 #define UART1_CTS_PORT GPIO_B_NUM
115 #define UART1_CTS_PIN 2

116

117 #define UART1_RTS_PORT GPIO_D_NUM
118 #define UART1_RTS_PIN 3

76

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

/** @} */
VERE e - - - - ———x/

/** \name SM14 Button configuration
*

* Buttons on the SmartRFO06 are connected as follows:
* - BUTTON_LEFT -> PC1

* — BUTTON_RIGHT -> PCO

* Qf

*/

/** BUTTON_LEFT -> PC1 */

#define BUTTON_LEFT_PORT GPIO_C_NUM

#define BUTTON_LEFT_PIN 1

#define BUTTON_LEFT_VECTOR GPIO_C_IRQn

/%% BUTTON_RIGHT -> PCO */

#define BUTTON_RIGHT_PORT GPIO_C_NUM
#define BUTTON_RIGHT_PIN 0

#define BUTTON_RIGHT_VECTOR GPIO_C_IRQn

/* Notify various examples that we have Buttons */

#define PLATFORM_HAS_BUTTON 1

#define PLATFORM_SUPPORTS_BUTTON_HAL 1

/*x @} */

[¥—=——= =%/
/**

* \name ADC configuration

These values configure which CC2538 pins and ADC channels to use for the ADC
inputs.

L R

ADC inputs can only be on port A.

* Qf

*/

//#define ADC_ALS_PWR_PORT GPIO_A_NUM /**< ALS power GPI0 control port */
//#define ADC_ALS_PWR_PIN 7 /**< ALS power GPIO control pin */

#define ADC_ALS_OUT_PIN 6 /**< ALS output ADC input pin on port A */

//#define ADC_MQ135_PWR_PORT GPIO_A_NUM
//#define ADC_MQ135_PWR_PIN 4 /*x< GPIO connected to 5V regulator EN */
#define ADC_MQ135_OUT_PIN 5 /*%< MQ135 output ADC input pin on port A */

#define ADC_S5V_PWR_EN_PORT GPIO_A_NUM /**< ALS power GPIO control port */
#define ADC_5V_PWR_EN_PIN 4
/*% @} */

* \name SPI configuration

These values configure which CC2538 pins to use for the SPI lines. Both
SPI instances can be used independently by providing the corresponding
port / pin macros.

o{

* X X X *

*/

#define SPIO_IN_USE 1

#define SPI1_IN_USE O

#if SPIO_IN_USE

/** Clock port SPIO */

#define SPIO_CLK_PORT GPIO_D_NUM

/** Clock pin SPIO */

#define SPIO_CLK_PIN O

/** TX port SPIO (master mode: MOSI) */
#define SPIO_TX_PORT GPIO_D_NUM

/** TX pin SPIO */

#define SPIO_TX_PIN 1

/** RX port SPIO (master mode: MISO */
#define SPIO_RX_PORT GPIO_D_NUM

/** RX pin SPIO */

#define SPIO_RX_PIN 3

7

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

#endif /* #if SPIO_IN_USE */

#if SPI1_IN_USE

/** Clock port SPI1 */

#define SPI1_CLK_PORT GPIO_D_NUM

/*% Clock pin SPI1 */

#define SPI1_CLK_PIN O

/** TX port SPI1 (master mode: MOSI) */
#define SPI1_TX_PORT GPIO_D_NUM

/** TX pin SPI1 */

#define SPI1_TX_PIN 1

/** RX port SPI1 (master mode: MISO) */
#define SPI1_RX_PORT GPIO_D_NUM

/** RX pin SPI1 */

#define SPI1_RX_PIN 3

#endif /* #if SPI1_IN_USE */

/**x @} */

/%%

* \name AT25SF321A Flash Memory Chip Select Line
*

*x 0f

*/

#define FLASH_SPI_CS_PORT GPIO_D_NUM

#define FLASH_SPI_CS_PIN 4

/** @} */

/**

* \name CC2538 TSCH configuration

*

* Qf

*/

#define RADIO_PHY_OVERHEAD CC2538_PHY_OVERHEAD
#define RADIO_BYTE_AIR_TIME CC2538_BYTE_AIR_TIME
#define RADIO_DELAY_BEFORE_TX CC2538_DELAY_BEFORE_TX
#define RADIO_DELAY_BEFORE_RX CC2538_DELAY_BEFORE_RX
#define RADIO_DELAY_BEFORE_DETECT CC2538_DELAY_BEFORE_DETECT
/** @} */

* \name I2C configuration

——

* As default there is not a default pin assignment for I2C, change this values

* accordingly if mapping either pin to the I2C controller.
* Qf

*/

#define I2C_SCL_PORT GPIO_B_NUM

#define I2C_SCL_PIN O

#define I2C_SDA_PORT GPIO_B_NUM

#define I2C_SDA_PIN 1

#define I2C_INT_PORT GPIO_B_NUM
#define I2C_INT_PIN 3

/*x @} x/

[x————= -—— -—— -—— -—
/**

* \name CC2592 Range Entender

*

* 0

*/

#define RE_PA_EN_PORT GPIO_C_NUM
#define RE_PA_EN_PIN 3

#define RE_LNA_EN_PORT GPIO_C_NUM
#define RE_LNA_EN_PIN 2

#define RE_HGM_PORT GPIO_D_NUM
#define RE_HGM_PIN 2

/%% @} */

/%%

* \name Device string used on startup

78

255
256
257
258
259
260
261
262
263
264
265

© 00~ U WN -

* Qf
*/

#define BOARD_STRING "BULLDOG MOTE_ V1"
/xx @} */

#endif /* BOARD_H_ */

VLS

* Q}
* Q}
*/

I2C Firmware

board-12c.h

~
*

Copyright (c) 2016, Zolertia <http://www.zolertia.com>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither the name of the Institute nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ‘‘AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

¥R X X X X X K K K K K X X X X X X X X X X X X X ¥

*
~

/% .

#include "contiki.h"

/* Initialize the I2C module */
uint8_t board_i2c_init();

/* I2C read registers */
uint8_t board_i2c_read(uint8_t addr, uint8_t reg, uint8_t *buf,

uint8_t bytes);

/* I2C write to a single register */
uint8_t board_i2c_write(uint8_t addr, uint8_t reg, uint8_t value);

uint8_t board_i2c_read16(uint8_t addr, uint8_t reg, uintl6_t *buf);

/* */
/xx @} */

board-i2c.c

79

© 00U WN -

~
*

Copyright (c) 2015, Zolertia
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
¢¢AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

¥R X X X X X K K K K X XK X X X X X X X K K K X X X X X*

[r==mm- */

* \addtogroup zoul-bme280-sensor
* \ingroup zoul

e{

\file
Architecture-specific I2C for the external BME280 weather sensor

\author
Antonio Lignan <alinan@zolertia.com>

* X X X ¥ X ¥ *

*
~

/* */
#include "contiki.h"
#include "dev/i2c.h"
/i -—=x/
uint8_t
board_i2c_init(void)
{
i2c¢c_init (I2C_SDA_PORT, I2C_SDA_PIN, I2C_SCL_PORT, I2C_SCL_PIN,
I2C_SCL_FAST_BUS_SPEED) ;
return i2c_master_error();
}
/* */
uint8_t
board_i2c_write(uint8_t addr, uint8_t reg, uint8_t value)
{
uint8_t buf[2];

buf [0] = reg;
buf [1] = value;

i2c_master_enable();
return i2c_burst_send(addr, buf, 2);

80

© 00U WN -

RN NN NNNNDRN R H e e e e
0T TR WN = OO0 U R W = O

29

/*

uint8_t
board_i2c_read(uint8_t addr, uint8_t reg, uint8_t *buf, uint8_t bytes)
{
i2c_master_enable();
if (12c_single_send(addr, reg) == I2C_MASTER_ERR_NONE) {
while(i2c_master_busy());
return i2c_burst_receive(addr, buf, bytes);
} else return I2CM_STAT_ERROR;

uint8_t
board_i2c_read16(uint8_t addr, uint8_t reg, uintl6_t *buf)
{
uint8_t datal2];
i2c_master_enable();
if (i2c_single_send(addr, reg) == I2C_MASTER_ERR_NONE) {
while(i2c_master_busy());
int ret = i2c_burst_receive(addr, data, 2);
*buf = (uinti16_t)datal[1] << 8 | datal0];
return ret;
} else return I2CM_STAT_ERROR;
}
VLS
* Q}
*/

Board Sensor Firmware

bulldogV1-sensors.c

~
*

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
¢¢AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

¥R X X X X X K K K K K XK X X X X X X X K K K X X X X Xx

*
~

/%%
* \addtogroup cc2538-smartrf
* 0

81

Copyright (c) 2012, Texas Instruments Incorporated - http://www.ti.com/

*/

© 00U WN -

W W W WK NDNDDDNDDNDDNDNN DN o = e e =
WNHOOWTDHDU R WNHFHO OO U kR WN=O

* O X X X ¥ ¥ *

*/

\defgroup cc2538-smartrf-sensors SmartRFO6EB Sensors

Generic module controlling sensors on the SmartRFO6EB

e{

\file
Implementation of a generic module controlling SmartRFO6EB sensors

#include "contiki.h"

#include "lib/sensors.h"
#include "dev/als-sensor.h"
#include "dev/bmp280-sensor.h"
#include "dev/mql35-sensor.h"
#include "dev/cc2538-sensors.h"

#include <string.h>

/** \brief Exports a global symbol to be used by the sensor API x/

SENSORS (%¥als_sensor, &cc2538_temp_sensor, &vdd3_sensor, &bmp280_sensor, &mql35_sensor);
//SENSORS (&als_sensor, &cc2538_temp_sensor, &vdd3_sensor, &bmp280_sensor);

VTS

*
*

*/

e}
@}

MQ135 Sensor Firmware

m

~
O K X X X X X X X X K K K K K X X X X X X X X X X X X ¥ x

*
~

ql35-sensor.h

Copyright (c) 2013, ADVANSEE - http://www.advansee.com/
Benot Thbaudeau <benoit.thebaudeau@advansee.com>
A1l rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
¢¢AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

/%%

*

\addtogroup cc2538-bulldogVli-sensors

82

© 00O Utk WhN -

R I R R R R CHEE R T

*/

e{
\defgroup bulldogVli-als-sensor BulldogVl ALS Driver

Driver for the BulldogVl ALS sensor
o{

\file
Header file for the bulldogVl ALS Driver. Simple driver to tell ambient

lighting in a room. Converts ADC value for photoresistor into value from 0-100
where O represents a dark room with poor light, and 100 represents brightly

1lit room.
Eqn:
ALS Val = ADC * (-1/160) + 106.25

#ifndef MQ135_SENSOR_H_
#define MQ135_SENSOR_H_

#include "lib/sensors.h"

/%

/** \name ALS sensor

*

*/

e{

#define MQ135_SENSOR "MQ135"
/%% @} */

extern const struct sensors_sensor mql35_sensor;

#endif /* ALS_SENSOR_H_ */

/**

*
*

*/

e}
@}

mql35-sensor.c

~
*

* O K X X X X X X X K K K K XK X X X X X X X X X ¥ X ¥

Copyright (c) 2013, ADVANSEE - http://www.advansee.com/
Benot Thbaudeau <benoit.thebaudeau@advansee.com>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
€“AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

83

75

89
90
91
92
93
94
95
96

* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/

\addtogroup bulldogVl MQ135 sensor
o{

\file

Driver for the BulldobV1 MQ135
*/

#include "contiki.h"

#include "sys/clock.h"

#include "dev/ioc.h"

#include "dev/gpio.h"

#include "dev/adc.h"

#include "dev/mq135-sensor.h"

#include <stdint.h>

#define ADC_MQ135_PWR_PORT_BASE GPIO_PORT_TO_BASE(ADC_5V_PWR_EN_PORT)
#define ADC_MQ135_PWR_PORT ADC_5V_PWR_EN_PORT

#define ADC_MQ135_PWR_PIN_MASK GPIO_PIN_MASK(ADC_5V_PWR_EN_PIN)

#define ADC_MQ135_PWR_PIN ADC_5V_PWR_EN_PIN

#define ADC_MQ135_OUT_PIN_MASK GPIO_PIN_MASK(ADC_MQ135_OUT_PIN)

// Analog sensors need many samples of readings, choose numbers of samples
// to be a power of 2 to use shifting instead of division for averaging
#define ADC_SAMPLES 128

#define ADC_LOG_2_SAMPLES 7

static int
value(int type)
{
uint8_t channel = SOC_ADC_ADCCON_CH_AINO + ADC_MQ135_0OUT_PIN;
intl6_t res = 0;
uint8_t i = 0;
while (i < ADC_SAMPLES) {
res += adc_get(channel, SOC_ADC_ADCCON_REF_AVDD5, SOC_ADC_ADCCON_DIV_512);
i++;
}
uint16_t res2 = res >> ADC_LOG_2_SAMPLES;
return res2;

static int
configure(int type, int value)
{
switch(type) {
case SENSORS_HW_INIT:
// configure PWR pin
GPIO_SOFTWARE_CONTROL (ADC_MQ135_PWR_PORT_BASE, ADC_MQ135_PWR_PIN_MASK) ;
GPIO_SET_OUTPUT (ADC_MQ135_PWR_PORT_BASE, ADC_MQ135_PWR_PIN_MASK) ;
GPIO_CLR_PIN(ADC_MQ135_PWR_PORT_BASE, ADC_MQ135_PWR_PIN_MASK);
ioc_set_over (ADC_MQ135_PWR_PORT, ADC_MQ135_PWR_PIN, IOC_OVERRIDE_DIS);

// configure ADC input pin

GPIO_SOFTWARE_CONTROL (GPIO_A_BASE, ADC_MQ135_OUT_PIN_MASK);
GPIO_SET_INPUT(GPIO_A_BASE, ADC_MQ135_0UT_PIN_MASK);
ioc_set_over (GPIO_A_NUM, ADC_MQ135_OUT_PIN, IOC_OVERRIDE_ANA);

break;
case SENSORS_ACTIVE:
if (value == 1) {
// turn on PWR pin for ADC
GPIO_SET_PIN(ADC_MQ135_PWR_PORT_BASE, ADC_MQ135_PWR_PIN_MASK);
} else if (value == 0) {
// turn off PWR pin for ADC
GPIO_CLR_PIN(ADC_MQ135_PWR_PORT_BASE, ADC_MQ135_PWR_PIN_MASK);
}

84

97

99
100
101
102
103
104
105
106
107
108
109
110
111

0~ Uk WN -

break;

}

return 0;
}
/% */
static int
status(int type)
{
return 1;
}
/* */
SENSORS_SENSOR (mq135_sensor, MQ135_SENSOR, value, configure, status);

/xx @} */

Platform Firmware

platform.c

~
*

Copyright (c) 2012, Texas Instruments Incorporated - http://www.ti.com/
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
¢¢AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

¥R X X X R K K K K XK X X X X X X X X K K K K X X X ¥ X*

*
~

/%%
\addtogroup cc2538-platforms
e{

\defgroup cc2538dk The cc2538 Development Kit platform

The cc2538DK is a platform by Texas Instruments, based on the
cc2538 SoC with an ARM Cortex-M3 core.

e{

\file
Main module for the bulldogVl platform

* X X X X X X X X X ¥

*
~

~
*

*/

85

99
100
101
102
103
104
105
106
107
108
109
110
111
112

#include "contiki.h"
#include "dev/adc.h"
#include "dev/leds.h"
#include "dev/uart.h"
#include "dev/serial-line.h"
#include "dev/slip.h"
#include "dev/cc2538-rf.h"
#include "dev/udma.h"
#include "dev/crypto.h"
#include "dev/button-hal.h"
#include "usb/usb-serial.h"
#include "lib/random.h"
#include "lib/sensors.h"
#include "net/netstack.h"
#include "net/mac/framer/frame802154.h"
#include "net/linkaddr.h"
#include "sys/platform.h"
#include "soc.h"

#include "cpu.h"

#include "reg.h"

#include "ieee-addr.h"
#include "lpm.h"

#include <stdint.h>
#include <string.h>
#include <stdio.h>

/* Log configuration */

#include "sys/log.h"

#define LOG_MODULE "BULLDOGV1"
#define LOG_LEVEL LOG_LEVEL_MAIN

static void
fade(leds_mask_t 1)
{
volatile int ij;
int k, j;
for(k = 0; k < 800; ++k) {
j =k >400 7 800 - k : k;

leds_on(1);

for(i = 0; i < j; ++i) {
__asm("nop");

}

leds_off(1);

for(i = 0; i < 400 - j; ++i) {
__asm("nop");

static void
set_rf_params(void)
{
uint16_t short_addr;
uint8_t ext_addr[8];

ieee_addr_cpy_to(ext_addr, 8);

short_addr = ext_addr([7];
short_addr |= ext_addr[6] << 8;

NETSTACK_RADIO.set_value (RADIO_PARAM_PAN_ID, IEEE802154_PANID);
NETSTACK_RADIO.set_value (RADIO_PARAM_16BIT_ADDR, short_addr);
NETSTACK_RADIO.set_value (RADIO_PARAM_CHANNEL, IEEE802154_DEFAULT_CHANNEL) ;
NETSTACK_RADIO.set_object (RADIO_PARAM_64BIT_ADDR, ext_addr, 8);

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

void
platform_init_stage_one(void)
{

soc_init();

leds_init();
fade (LEDS_RED) ;

void
platform_init_stage_two()
{

~
*

Character I/0 Initialisation.
When the UART receives a character it will call serial_line_input_byte to
notify the core. The same applies for the USB driver.

If slip-arch is also linked in afterwards (e.g. if we are a border router)
it will overwrite one of the two peripheral input callbacks. Characters
received over the relevant peripheral will be handled by

slip_input_byte instead

* ¥ X X X ¥ X ¥

*/
#if UART_CONF_ENABLE

uart_init(0);

uart_init(1);

uart_set_input (SERIAL_LINE_CONF_UART, serial_line_input_byte);
#endif

#if USB_SERIAL_CONF_ENABLE
usb_serial_init();
usb_serial_set_input(serial_line_input_byte) ;
#endif

serial_line_init();

/* Initialise the H/W RNG engine. */
random_init (0) ;

udma_init();

#if CRYPTO_CONF_INIT
crypto_init();
crypto_disable();

#endif

/* Populate linkaddr_node_addr */
ieee_addr_cpy_to(linkaddr_node_addr.u8, LINKADDR_SIZE);

button_hal_init();
INTERRUPTS_ENABLEQ) ;

fade (LEDS_YELLOW) ;

void

platform_init_stage_three()

i LOG_INFO("%s\n", BOARD_STRING);
set_rf_params();
soc_print_info();

adc_init();

// set CC2592 pins as outputs
gpio_hal_arch_pin_set_output (CC2538_RF_RE_PA_PORT,CC2538_RF_RE_PA_PIN);

87

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

gpio_hal_arch_pin_set_output (CC2538_RF_RE_LNA_PORT,CC2538_RF_RE_LNA_PIN) ;
gpio_hal_arch_pin_set_output (CC2538_RF_RE_HGM_PORT,CC2538_RF_RE_HGM_PIN) ;

// PA =0, LNA = 1 for RX
gpio_hal_arch_clear_pin(CC2538_RF_RE_PA_PORT,CC2538_RF_RE_PA_PIN) ;
gpio_hal_arch_set_pin(CC2538_RF_RE_LNA_PORT,CC2538_RF_RE_LNA_PIN) ;
#if CC2538_RF_RE_HGM_EN
gpio_hal_arch_set_pin(CC2538_RF_RE_HGM_PORT,CC2538_RF_RE_HGM_PIN) ;
#else
gpio_hal_arch_clear_pin(CC2538_RF_RE_HGM_PORT,CC2538_RF_RE_HGM_PIN) ;
#endif

fade (LEDS_GREEN) ;
process_start (&sensors_process, NULL);

fade (LEDS_BLUE) ;

void

platform_idle()

{
/* We have serviced all pending events. Enter a Low-Power mode. */
lpm_enter();

88

O~ Uk WN -

Appendix B

LS-AODYV Simulated Routing Protocols
EA-AODV

ea-aodv-routing-protocol.h

/* —*%- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
* Copyright (c) 2009 IITP RAS

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation;

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Based on
NS-2 AODV model developed by the CMU/MONARCH group and optimized and
tuned by Samir Das and Mahesh Marina, University of Cincinnati;

AODV-UU implementation by Erik Nordstrm of Uppsala University
http://core.it.uu.se/core/index.php/AODV-UU

* O K X X X X X X X K K K K X X X X ¥ ¥ ¥ *

Authors: Elena Buchatskaia <borovkovaes@iitp.ru>
* Pavel Boyko <boyko@Qiitp.ru>

*/

#ifndef EA_AODVROUTINGPROTOCOL_H

#define EA_AODVROUTINGPROTOCOL_H

#define ESP32_VOLTAGE 3.3f

// Cameron: This should change in the future when we allow variablity
#define PACKET_SIZE 4096
#define RREF_PACKET_SIZE 64

// Cameron: Burn rate for transmission per byte. Update this as determined.

#include "ea-aodv-rtable.h"

#include "ea-aodv-rqueue.h"

#include "ea-aodv-packet.h"

#include "ea-aodv-neighbor.h"

#include "ea-aodv-dpd.h"

#include "ns3/node.h"

#include "ns3/random-variable-stream.h"
#include "ns3/output-stream-wrapper.h"
#include '"ns3/ipv4-routing-protocol.h"
#include "ns3/ipv4-interface.h"
#include "ns3/ipv4-13-protocol.h"
#include <map>

namespace ns3 {
namespace ealodv {
/**

* \ingroup ealodv

89

56 *
57 * \brief AODV routing protocol

58 */

59 class RoutingProtocol : public Ipv4RoutingProtocol
60 A

61 public:

62 /**

63 * \brief Get the type ID.

64 * \return the object Typeld

65 */

66 static TypeId GetTypeld (void);
67 static const uint32_t EA_AODV_PORT;

68

69 // EA-AQDV

70 static const float power_receive;

71 static const float power_active;

72 static const float m_aliveThreshold;
73 static const double TxConst;

74

75 /// constructor

76 RoutingProtocol ();

7 virtual “RoutingProtocol ();

78 virtual void DoDispose ();

79

80 // Inherited from Ipv4RoutingProtocol
81 Ptr<Ipv4Route> RouteOutput (Ptr<Packet> p, const Ipv4Header &header, Ptr<NetDevice> oif,

< Socket::SocketErrno &sockerr);
82 bool RoutelInput (Ptr<const Packet> p, const Ipv4Header &header, Ptr<const NetDevice> idev,

83 UnicastForwardCallback ucb, MulticastForwardCallback mcb,
84 LocalDeliverCallback lcb, ErrorCallback ecb);

85 virtual void NotifyInterfaceUp (uint32_t interface);

86 virtual void NotifyInterfaceDown (uint32_t interface);

87 virtual void NotifyAddAddress (uint32_t interface, Ipv4InterfaceAddress address);
88 virtual void NotifyRemoveAddress (uint32_t interface, Ipv4InterfaceAddress address);
89 virtual void SetIpv4 (Ptr<Ipv4> ipvé4);

90 virtual void PrintRoutingTable (Ptr<OutputStreamWrapper> stream, Time::Unit unit = Time::S) const;
91

92 // Handle protocol parameters

93 /**

94 * Get maximum queue time

95 * \returns the maximum queue time

96 */

97 Time GetMaxQueueTime () const

98 {

99 return m_maxQueueTime;

100 }

101 /**

102 * Set the maximum queue time

103 * \param t the maximum queue time

104 */

105 void SetMaxQueueTime (Time t);

106 /*x

107 * Get the maximum queue length

108 * \returns the maximum queue length

109 */

110 uint32_t GetMaxQueuelLen () const

111 {

112 return m_maxQueuelen;

113 }

114 /**

115 * Set the maximum queue length

116 * \param len the maximum queue length

117 */

118 void SetMaxQueueLen (uint32_t len);

119 /**

120 * Get destination only flag

121 * \returns the destination only flag

122 */

90

123 bool GetDestinationOnlyFlag () const

124 {

125 return m_destinationOnly;

126 }

127 /**

128 * Set destination only flag

129 * \param f the destination only flag
130 */

131 void SetDestinationOnlyFlag (bool f)
132 {

133 m_destinationOnly = f;

134 }

135 /*x

136 * Get gratuitous reply flag

137 * \returns the gratuitous reply flag
138 */

139 bool GetGratuitousReplyFlag () const
140 {

141 return m_gratuitousReply;

142 }

143 /**

144 * Set gratuitous reply flag

145 * \param f the gratuitous reply flag
146 */

147 void SetGratuitousReplyFlag (bool f)
148 {

149 m_gratuitousReply = f;

150 }

151 /%%

152 * Set hello enable

153 * \param f the hello enable flag

154 */

155 void SetHelloEnable (bool f)

156 {

157 m_enableHello = f;

158 }

159 /**

160 * Get hello enable flag

161 * \returns the enable hello flag

162 */

163 bool GetHelloEnable () comst

164 {

165 return m_enableHello;

166 }

167 /%

168 * Set broadcast enable flag

169 * \param f enable broadcast flag

170 */

171 void SetBroadcastEnable (bool f)

172 {

173 m_enableBroadcast = f;

174 }

175 /**

176 * Get broadcast enable flag

177 * \returns the broadcast enable flag
178 */

179 bool GetBroadcastEnable () const

180 {

181 return m_enableBroadcast;

182 }

183

184 /%%

185 * Assign a fixed random variable stream number to the random variables
186 * used by this model. Return the number of streams (possibly zero) that
187 * have been assigned.

188 &

189 * \param stream first stream index to use
190 * \return the number of stream indices assigned by this model

91

191
192
193
194
195
196
197
198

199
200

201

202
203
204
205
206

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

230
231

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

*/
int64_t AssignStreams (int64_t stream);

protected:

virtual void DoInitialize (void);

private:

// Protocol parameters.
uint32_t m_rreqRetries; ///< Maximum number of retransmissions of RREQ with TTL = NetDiameter to discover a
—» route
uint16_t m_ttlStart; ///< Initial TTL value for RREQ.
uint16_t m_ttlIncrement; ///< TTL increment for each attempt using the expanding ring search for RREQ
— dissemination.
uint16_t m_ttlThreshold; ///< Maximum TTL value for expanding ring search, TTL = NetDiameter is used beyond
— this value.
uint16_t m_timeoutBuffer; ///< Provide a buffer for the timeout.
uint16_t m_rreqRatelimit; ///< Maximum number of RREQ per second.
uint16_t m_rerrRatelimit; ///< Maximum number of REER per second.
Time m_activeRouteTimeout; ///< Period of time during which the route is considered to be valid.
uint32_t m_netDiameter; ///< Net diameter measures the maximum possible number of hops between two nodes in
— the network
/**
* NodeTraversalTime is a conservative estimate of the average one hop traversal time for packets
* and should include queuing delays, interrupt processing times and transfer times.
*/
Time m_nodeTraversalTime;
Time m_netTraversalTime; ///< Estimate of the average net traversal time.
Time m_pathDiscoveryTime; ///< Estimate of maximum time needed to find route in network.
Time m_myRouteTimeout; ///< Value of lifetime field in RREP generating by this node.
/%%
* Every HelloInterval the node checks whether it has sent a broadcast within the last HelloInterval.
* If it has not, it MAY broadcast a Hello message
*/
Time m_helloInterval;
uint32_t m_allowedHelloLoss; ///< Number of hello messages which may be loss for valid link
/%%
* DeletePeriod is intended to provide an upper bound on the time for which an upstream node A
* can have a neighbor B as an active next hop for destination D, while B has invalidated the route to D.
*/
Time m_deletePeriod;
Time m_nextHopWait; ///< Period of our waiting for the neighbour’s RREP_ACK
Time m_blackListTimeout; ///< Time for which the node is put into the blacklist
uint32_t m_maxQueuelen; ///< The maximum number of packets that we allow a routing protocol to buffer.
Time m_maxQueueTime; ///< The maximum period of time that a routing protocol is allowed to buffer a packet
— for.
bool m_destinationOnly; ///< Indicates only the destination may respond to this RREQ.
bool m_gratuitousReply; ///< Indicates whether a gratuitous RREP should be unicast to the node originated
— route discovery.
bool m_enableHello; ///< Indicates whether a hello messages enable
bool m_enableBroadcast; ///< Indicates whether a a broadcast data packets forwarding enable

//\}

/// IP protocol

Ptr<Ipv4> m_ipv4;

/// Raw unicast socket per each IP interface, map socket -> iface address (IP + mask)

std: :map< Ptr<Socket>, Ipv4InterfaceAddress > m_socketAddresses;

/// Raw subnet directed broadcast socket per each IP interface, map socket -> iface address (IP + mask)
std::map< Ptr<Socket>, Ipv4InterfaceAddress > m_socketSubnetBroadcastAddresses;

/// Loopback device used to defer RREQ until packet will be fully formed

Ptr<NetDevice> m_lo;

/// Routing table

RoutingTable m_routingTable;

/// A "drop-front" queue used by the routing layer to buffer packets to which it does not have a route.
RequestQueue m_queue;

/// Broadcast ID

uint32_t m_requestId;

/// Request sequence number

uint32_t m_seqNo;

92

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

286
287
288
289
290
291
292
293
294
295

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318

/// Handle duplicated RREQ

IdCache m_rreqldCache;

/// Handle duplicated broadcast/multicast packets
DuplicatePacketDetection m_dpd;

/// Handle neighbors

Neighbors m_nb;

/// Number of RREQs used for RREQ rate control
uint16_t m_rreqCount;

/// Number of RERRs used for RERR rate control
uintl16_t m_rerrCount;

// EA-AODV
uint16_t m_rrepCount;
public:

// EA-AODV Instance Variables
double m_energylLevel; // Remaining power level of instance node
double transDistance; // Transmition distance of instance node
float nodeX; // Instance node X coordinate
float nodeY; // Instance node Y coordinate
Time m_lastUpdateTime;
Ipv4Address ipv4Addr;
bool isReachable;
private:
/// Start protocol operation
void Start ();
/**
* Queue packet and send route request

\param p the packet to route

\param header the IP header

\param ucb the UnicastForwardCallback function
\param ecb the ErrorCallback function

* X X X ¥

*/
void DeferredRouteOutput (Ptr<const Packet> p, const Ipv4Header & header, UnicastForwardCallback ucb,
— ErrorCallback ecb);
/%%
If route exists and is valid, forward packet.

*
*

* \param p the packet to route

* \param header the IP header

* \param ucb the UnicastForwardCallback function
* \param ecb the ErrorCallback function

* \returns true if forwarded

*/

bool Forwarding (Ptr<const Packet> p, const Ipv4Header & header, UnicastForwardCallback ucb, ErrorCallback
<~ ecb);

/**

* Repeated attempts by a source node at route discovery for a single destination
* use the expanding ring search technique.
* \param dst the destination IP address
*/
void ScheduleRreqRetry (Ipv4Address dst);
/%%
* Set lifetime field in routing table entry to the maximum of existing lifetime and 1t, if the entry exists
* \param addr - destination address
* \param 1t - proposed time for lifetime field in routing table entry for destination with address addr.
* \return true if route to destination address addr exist
*/
bool UpdateRouteLifeTime (Ipv4Address addr, Time 1t);
/%%
* Update neighbor record.
* \param receiver is supposed to be my interface
* \param sender is supposed to be IP address of my neighbor.
*/
void UpdateRouteToNeighbor (Ipv4Address sender, Ipv4Address receiver);
/%%
* Test whether the provided address is assigned to an interface on this node
* \param src the source IP address
* \returns true if the IP address is the node’s IP address

93

319 */
320 bool IsMyOwnAddress (Ipv4Address src);

321 /%%

322 * Find unicast socket with local interface address iface
323 *

324 * \param iface the interface

325 * \returns the socket associated with the interface

326 */

327 Ptr<Socket> FindSocketWithInterfaceAddress (Ipv4InterfaceAddress iface) const;
328 /**

329 * Find subnet directed broadcast socket with local interface address iface
330 *

331 * \param iface the interface

332 * \returns the socket associated with the interface

333 */

334 Ptr<Socket> FindSubnetBroadcastSocketWithInterfaceAddress (Ipv4InterfaceAddress iface) const;
335 /%%

336 * Process hello message

337 *

338 * \param rrepHeader RREP message header

339 * \param receiverIfaceAddr receiver interface IP address
340 */

341 void ProcessHello (RrepHeader const & rrepHeader, Ipv4Address receiverIfaceAddr);
342 /**

343 * Create loopback route for given header

344 *

345 * \param header the IP header

346 * \param oif the output interface net device

347 * \returns the route

348 */

349 Ptr<Ipv4Route> LoopbackRoute (const Ipv4Header & header, Ptr<NetDevice> oif) const;
350

351 ///\name Receive control packets
352 //N\{
353 /// Receive and process control packet

354 void RecvEaAodv (Ptr<Socket> socket);

355 /// Receive RREQ

356 void RecvRequest (Ptr<Packet> p, Ipv4Address receiver, Ipv4Address src);
357 /// Receive RREP

358 void RecvReply (Ptr<Packet> p, Ipv4Address my,Ipv4Address src);

359 /// Receive RREP_ACK

360 void RecvReplyAck (Ipv4Address neighbor);

361 /// Receive RERR from node with address src

362 void RecvError (Ptr<Packet> p, Ipv4Address src);

363 //\}

364

365 ///\name Send

366 //IN\{

367 /// Forward packet from route request queue

368 void SendPacketFromQueue (Ipv4Address dst, Ptr<Ipv4Route> route);

369 /// Send hello

370 void SendHello ();

371 /// Send RREQ

372 void SendRequest (Ipv4Address dst);

373 /// Send RREP

374 void SendReply (RreqHeader const & rreqHeader, RoutingTableEntry const & toOrigin);
375 /**% Send RREP by intermediate node

376 * \param toDst routing table entry to destination

377 * \param toOrigin routing table entry to originator

378 * \param gratRep indicates whether a gratuitous RREP should be unicast to destination
379 */

380 void SendReplyBylIntermediateNode (RoutingTableEntry & toDst, RoutingTableEntry & toOrigin, bool gratRep);
381 /// Send RREP_ACK

382 void SendReplyAck (Ipv4Address neighbor);

383 /// Initiate RERR

384 void SendRerrWhenBreaksLinkToNextHop (Ipv4Address nextHop) ;

385 /// Forward RERR

386 void SendRerrMessage (Ptr<Packet> packet, std::vector<Ipv4Address> precursors);

94

387
388

389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446

/%%

* Send RERR message when no route to forward input packet. Unicast if there is reverse route to
< originating node, broadcast otherwise.

* \param dst - destination node IP address

* \param dstSeqNo - destination node sequence number

* \param origin - originating node IP address

*/

void SendRerrWhenNoRouteToForward (Ipv4Address dst, uint32_t dstSeqNo, Ipv4Address origin);

/// e}

/%%

* Send packet to destination scoket

* \param socket - destination node socket

* \param packet - packet to send

* \param destination - destination node IP address

*/

void SendTo (Ptr<Socket> socket, Ptr<Packet> packet, Ipv4Address destination);

/// Hello timer

Timer m_htimer;

/// Schedule next send of hello message

void HelloTimerExpire ();

/// RREQ rate limit timer

Timer m_rreqRateLimitTimer;

/// Reset RREQ count and schedule RREQ rate limit timer with delay 1 sec.
void RreqRatelLimitTimerExpire ();

/// RERR rate limit timer

Timer m_rerrRateLimitTimer;

/// Reset RERR count and schedule RERR rate limit timer with delay 1 sec.
void RerrRatelLimitTimerExpire ();

/// Map IP address + RREQ timer.

std: :map<Ipv4Address, Timer> m_addressReqTimer;

// EA-AODV begin
Timer m_powerDecayTimer;

void PowerDecayTimerExpire();

/%%

* Handle route discovery process

* \param dst the destination IP address

*/

void RouteRequestTimerExpire (Ipv4Address dst);

/**

* Mark link to neighbor node as unidirectional for blacklistTimeout
*

* \param neighbor the IP address of the neightbor node

* \param blacklistTimeout the black list timeout time

*/

void AckTimerExpire (Ipv4Address neighbor, Time blacklistTimeout);

/// Provides uniform random variables.

Ptr<UniformRandomVariable> m_uniformRandomVariable;

/// Keep track of the last bcast time

Time m_lastBcastTime;

void getCoordinates(void);

float GetDistanceBetweenNodes(RoutingTableEntry route);
I8

} //namespace ealodv
} //namespace ns3

#endif /+* EA_AODVROUTINGPROTOCOL_H */

ea-aodv-routing-protocol.cc

/* —x— Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- x/

/*

95

O K X X X X X X X K K K K K K X X X X ¥ ¥ ¥ *

*/

Copyright (c) 2009 IITP RAS

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation;

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Based on
NS-2 AODV model developed by the CMU/MONARCH group and optimized and
tuned by Samir Das and Mahesh Marina, University of Cincinnati;

AODV-UU implementation by Erik Nordstrm of Uppsala University
http://core.it.uu.se/core/index.php/AODV-UU

Authors: Elena Buchatskaia <borovkovaes@iitp.ru>
Pavel Boyko <boyko@iitp.ru>

#define NS_LOG_APPEND_CONTEXT \

if (m_ipv4) { std::clog << "[node." << m_ipv4->GetObject<Node> ()->GetId () << "I, "; }

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

"ea-aodv-routing-protocol.h"
"ns3/simulator.h"
"ns3/command-line.h"
"ns3/config.h"

"ns3/log.h"

"ns3/boolean.h"
"ns3/random-variable-stream.h"
"ns3/inet-socket-address.h"
"ns3/trace-source-accessor.h"
"ns3/udp-socket-factory.h"
"ns3/udp-1l4-protocol.h"
"ns3/udp-header.h"
"ns3/wifi-net-device.h"
"ns3/adhoc-wifi-mac.h"
"ns3/mobility-model.h"
"ns3/string.h"
"ns3/pointer.h"

<algorithm>

<limits>

<cmath>

#define RREQ_WAIT_TIME 1

/* Debug and Simulation cout macros */
//#define DEBUG 1
#define SIMSTATS 1

#ifdef DEBUG
#define BUGOUT(x) do{std::cout<< x <<std::endl;}while(0)

#else

#define BUGOUT(x) do{l}while(0)

#endif

#ifdef SIMSTATS
#define SIMOUT(x) do{std::cout<< x <<std::endl;}while(0)

#else

#define SIMOUT(x) do{}while(0)

#endif

// ENERGY MODEL CONSTANTS

96

71 #define ALPHA_TX 0.371354558f

72 #define MIN_RX_POW 1.58489319e-13f
73 #define LAMBDA2 0.015625f

74 #define PI2 9.869604401f

75 namespace ns3 {

77 NS_LOG_COMPONENT_DEFINE ("EaAodvRoutingProtocol");

79 namespace ealodv {
80 NS_OBJECT_ENSURE_REGISTERED (RoutingProtocol);

82 /// UDP Port for EA_AODV control traffic
83 const uint32_t RoutingProtocol::EA_AODV_PORT = 654;

85 // Energy Model

86 const float RoutingProtocol::power_receive = 0.075 * ESP32_VOLTAGE;

87 const float RoutingProtocol::power_active = 0.0225 * ESP32_VOLTAGE;

88 // based on single-core @ 80 MHz with modem-sleep

89 const float RoutingProtocol::m_aliveThreshold = 0.001;

90 const double RoutingProtocol::TxConst=(double) (PACKET_SIZE*8)/1e6 * ESP32_VOLTAGE *
91 MIN_RX_POW * 16 * PI2 / (ALPHA_TX * LAMBDA2);

92 /#* determined by:

93 * ALPHA_TX is proportional constant relating output antenna power to current

94 * consumption: P_tx(W) = I_tx * ALPHA_TX

95 * E_tx = P_tx * time

96 * E_tx = #bits/(802.11b bitrate) * ESP32_VOLTAGE * I_tx

97 * E_tx = #bits/(802.11b bitrate) * ESP32_VOLTAGE * MIN_RX_POW * 16xpi~2 * distance”2
98 * / (ALPHA_TX * LAMBDA"2)

99 *x/

101 * \ingroup ealodv

102 * \brief Tag used by AODV implementation

103 */

104 class DeferredRouteOutputTag : public Tag

105 {

106

107 public:

108 /**

109 * \brief Constructor

110 * \param o the output interface

111 */

112 DeferredRouteOutputTag (int32_t o = -1) : Tag (O,
113 m_oif (o)
114 {

115 }

116

117 /**

118 * \brief Get the type ID.

119 * \return the object Typeld

120 */

121 static TypeId GetTypeId ()

122 {

123 static Typeld tid = TypeId ("ns3::ealodv::DeferredRouteOutputTag")
124 .SetParent<Tag> ()

125 .SetGroupName ("eaAodv")

126 .AddConstructor<DeferredRouteQutputTag> ()
127 5

128 return tid;

129 }

130

131 Typeld GetInstanceTypeId () const

132

133 return GetTypeId ();

134 }

135

136 /*x

137 * \brief Get the output interface

138 * \return the output interface

97

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

*/
int32_t GetInterface () const
{

return m_oif;

}

/**
* \brief Set the output interface
* \param oif the output interface

*/
void SetInterface (int32_t oif)
{
m_oif = oif;
}
uint32_t GetSerializedSize () const
{
return sizeof(int32_t);
}
void Serialize (TagBuffer i) const
{
i.WriteU32 (m_oif);
}
void Deserialize (TagBuffer i)
{
m_oif = i.ReadU32 ();
}
void Print (std::ostream &os) const
{
os << "DeferredRouteOutputTag: outputyinterface =," << m_oif;
}
private:

/// Positive if output device is fixed in RouteQOutput
int32_t m_oif;
I

NS_OBJECT_ENSURE_REGISTERED (DeferredRouteOutputTag) ;

RoutingProtocol: :RoutingProtocol ()

: m_rreqRetries (2),
m_ttlStart (1),
m_ttlIncrement (2),
m_ttlThreshold (7),
m_timeoutBuffer (2),
m_rreqRatelLimit (10),
m_rerrRateLimit (10),
m_activeRouteTimeout (Seconds (3)),
m_netDiameter (35),
m_nodeTraversalTime (MilliSeconds (40)),
m_netTraversalTime (Time ((2 * m_netDiameter) * m_nodeTraversalTime)),
m_pathDiscoveryTime (Time (2 * m_netTraversalTime)),
m_myRouteTimeout (Time (2 * std::max (m_pathDiscoveryTime, m_activeRouteTimeout))),
m_helloInterval (Seconds (1)),
m_allowedHelloLoss (2),
m_deletePeriod (Time (5 * std::max (m_activeRouteTimeout, m_helloInterval))),
m_nextHopWait (m_nodeTraversalTime + MilliSeconds (10)),
m_blackListTimeout (Time (m_rreqRetries * m_netTraversalTime)),
m_maxQueuelLen (64),
m_maxQueueTime (Seconds (30)),
m_destinationOnly (false),
m_gratuitousReply (true),
m_enableHello (false),

98

207 m_routingTable (m_deletePeriod),

208 m_queue (m_maxQueuelen, m_maxQueueTime),

209 m_requestId (0),

210 m_seqNo (0),

211 m_rreqldCache (m_pathDiscoveryTime),

212 m_dpd (m_pathDiscoveryTime),

213 m_nb (m_helloInterval),

214 m_rreqCount (0),

215 m_rerrCount (0),

216 m_rrepCount (0),

217 m_energyLevel(1000.0),

218 transDistance(250.0),

219 nodeX(-1),

220 nodeY(-1),

221 m_lastUpdateTime (Seconds(0.0)),

222 ipv4Addr (Ipv4Address: :GetAny()),

223 isReachable(true),

224 m_htimer (Timer::CANCEL_ON_DESTROY),

225 m_rreqRateLimitTimer (Timer::CANCEL_ON_DESTROY),
226 m_rerrRatelLimitTimer (Timer::CANCEL_ON_DESTROY),
227 m_powerDecayTimer (Timer: : CANCEL_ON_DESTROY) ,
228 m_lastBcastTime (Seconds (0))

229 A{

230 m_nb.SetCallback (MakeCallback (&RoutingProtocol::SendRerrWhenBreaksLinkToNextHop, this));
231 }

232

233 Typeld

234 RoutingProtocol::GetTypeId (void)

235 {

236 static Typeld tid = Typeld ("ns3::ealodv::RoutingProtocol")

237 .SetParent<Ipv4RoutingProtocol> ()

238 .SetGroupName ("eaAodv")

239 .AddConstructor<RoutingProtocol> ()

240 .AddAttribute ("HelloInterval", "HELLO_ messages emission interval.",

241 TimeValue (Seconds (1)),

242 MakeTimeAccessor (&RoutingProtocol::m_helloInterval),

243 MakeTimeChecker ())

244 .AddAttribute ("TtlStart", "Initial,TTL_value for RREQ.",

245 UintegerValue (1),

246 MakeUintegerAccessor (&RoutingProtocol::m_ttlStart),

247 MakeUintegerChecker<uint16_t> ())

248 .AddAttribute ("TtlIncrement", "TTL increment, for each attempt using the expanding ring search for RREQ,
< dissemination.",

249 UintegerValue (2),

250 MakeUintegerAccessor (&RoutingProtocol::m_ttlIncrement),

251 MakeUintegerChecker<uint16_t> ())

252 .AddAttribute ("TtlThreshold", "Maximum TTL value for expanding ring search, TTL = NetDiameter is used,,
~— beyond, ,this value.",

253 UintegerValue (7),

254 MakeUintegerAccessor (&RoutingProtocol::m_ttlThreshold),

255 MakeUintegerChecker<uint16_t> ())

256 .AddAttribute ("TimeoutBuffer", "Provide_a buffer_ for the_ timeout.",

257 UintegerValue (2),

258 MakeUintegerAccessor (&RoutingProtocol::m_timeoutBuffer),

259 MakeUintegerChecker<uint16_t> ())

260 .AddAttribute ("RreqRetries", "Maximum number of retransmissions of RREQ to discover a route",

261 UintegerValue (2),

262 MakeUintegerAccessor (&RoutingProtocol::m_rreqRetries),

263 MakeUintegerChecker<uint32_t> ())

264 .AddAttribute ("RregRateLimit", "Maximum number of RREQ per second.",

265 UintegerValue (10),

266 MakeUintegerAccessor (&RoutingProtocol::m_rreqRateLimit),

267 MakeUintegerChecker<uint32_t> ())

268 .AddAttribute ("RerrRatelimit", "Maximum number of RERR per second.",

269 UintegerValue (10),

270 MakeUintegerAccessor (&RoutingProtocol::m_rerrRatelimit),

271 MakeUintegerChecker<uint32_t> ())

272 .AddAttribute ("NodeTraversalTime", "Conservative estimate of ithe average one hop traversal time for

99

< packetsyand;;should;include,"

273 "queuing delays, interrupt processing times and transfer times.",

274 TimeValue (MilliSeconds (40)),

275 MakeTimeAccessor (&RoutingProtocol::m_nodeTraversalTime),

276 MakeTimeChecker ())

277 .AddAttribute ("NextHopWait", "Period,of jour waiting ,for the neighbour’s RREP_ACK =10 ms +
< NodeTraversalTime",

278 TimeValue (MilliSeconds (50)),

279 MakeTimeAccessor (&RoutingProtocol::m_nextHopWait),

280 MakeTimeChecker ())

281 .AddAttribute ("ActiveRouteTimeout", "Period,of time during which,the route is considered,jto be valid",

282 TimeValue (Seconds (3)),

283 MakeTimeAccessor (&RoutingProtocol::m_activeRouteTimeout),

284 MakeTimeChecker ())

285 .AddAttribute ("MyRouteTimeout", "Value of lifetime field in RREP generating by, this node =2 *,
— max(ActiveRouteTimeout, PathDiscoveryTime)",

286 TimeValue (Seconds (11.2)),

287 MakeTimeAccessor (&RoutingProtocol::m_myRouteTimeout),

288 MakeTimeChecker ())

289 .AddAttribute ("BlackListTimeout", "Time for which the node is put,into the blacklist = RreqRetries, *
< NetTraversalTime",

290 TimeValue (Seconds (5.6)),

291 MakeTimeAccessor (&RoutingProtocol::m_blackListTimeout),

292 MakeTimeChecker ())

293 .AddAttribute ("DeletePeriod", "DeletePeriod, is intended, to provide an upper bound, jon the time for which,
< angupstream node A"

294 "can_ have a neighbor B as an active next hop for destination. D, while B has invalidated the.

<~ route_to D."

295 " =5 * max_(HelloInterval, ActiveRouteTimeout)",

296 TimeValue (Seconds (15)),

297 MakeTimeAccessor (&RoutingProtocol::m_deletePeriod),

298 MakeTimeChecker ())

299 .AddAttribute ("NetDiameter", "Net_diameter measures the maximum possible number of hops between two
— nodes in the network",

300 UintegerValue (35),

301 MakeUintegerAccessor (&RoutingProtocol::m_netDiameter),

302 MakeUintegerChecker<uint32_t> ())

303 .AddAttribute ("NetTraversalTime", "Estimate of jthe average net traversal time =,2 % NodeTraversalTime j*,
<~ NetDiameter",

304 TimeValue (Seconds (2.8)),

305 MakeTimeAccessor (&RoutingProtocol::m_netTraversalTime),

306 MakeTimeChecker ())

307 .AddAttribute ("PathDiscoveryTime", "Estimate of maximum time needed jto_find route in network =2 %
< NetTraversalTime",

308 TimeValue (Seconds (5.6)),

309 MakeTimeAccessor (&RoutingProtocol::m_pathDiscoveryTime),

310 MakeTimeChecker ())

311 .AddAttribute ("MaxQueueLen", "Maximum number of packets ithat we allow a routing protocol to buffer.",

312 UintegerValue (64),

313 MakeUintegerAccessor (&RoutingProtocol::SetMaxQueueLen,

314 &RoutingProtocol: :GetMaxQueuelen) ,

315 MakeUintegerChecker<uint32_t> ())

316 .AddAttribute ("MaxQueueTime", "Maximum time packets can, be queued,(in seconds)",

317 TimeValue (Seconds (30)),

318 MakeTimeAccessor (&RoutingProtocol::SetMaxQueueTime,

319 &RoutingProtocol: :GetMaxQueueTime) ,

320 MakeTimeChecker ())

321 .AddAttribute ("AllowedHelloLoss", "Number of hello messages which may be loss for valid link.",

322 UintegerValue (2),

323 MakeUintegerAccessor (&RoutingProtocol::m_allowedHelloLoss),

324 MakeUintegerChecker<uinti16_t> ())

325 .AddAttribute ("GratuitousReply", "Indicates whether a gratuitous RREP should be unicast to the node,
< originated route discovery.",

326 BooleanValue (true),

327 MakeBooleanAccessor (&RoutingProtocol::SetGratuitousReplyFlag,

328 &RoutingProtocol: :GetGratuitousReplyFlag),

329 MakeBooleanChecker ())

330 .AddAttribute ("DestinationOnly", "Indicates only, the destination may respond to this RREQ.",

100

331 BooleanValue (false),

332 MakeBooleanAccessor (&RoutingProtocol::SetDestinationOnlyFlag,
333 &RoutingProtocol: :GetDestinationOnlyFlag),
334 MakeBooleanChecker ())

335 .AddAttribute ("EnableHello", "Indicates whether a hello messages enable.",
336 BooleanValue (true),

337 MakeBooleanAccessor (&RoutingProtocol::SetHelloEnable,

338 &RoutingProtocol: :GetHelloEnable) ,

339 MakeBooleanChecker ())

340 .AddAttribute ("EnableBroadcast", "Indicates whether a broadcast data packets forwarding enable.",
341 BooleanValue (true),

342 MakeBooleanAccessor (&RoutingProtocol::SetBroadcastEnable,
343 &RoutingProtocol: :GetBroadcastEnable),
344 MakeBooleanChecker ())

345 .AddAttribute ("UniformRv",

346 "Access to the junderlying UniformRandomVariable",

347 StringValue ("ns3::UniformRandomVariable"),

348 MakePointerAccessor (&RoutingProtocol::m_uniformRandomVariable),
349 MakePointerChecker<UniformRandomVariable> ())

350 .AddAttribute ("MaxPower",

351 "Maximum_battery power of a node",

352 DoubleValue(100),

353 MakeDoubleAccessor (&RoutingProtocol::m_energyLevel),

354 MakeDoubleChecker<double> ())

355 .AddAttribute ("TransDistance",

356 "Transmission Distance for AODV algroithm",

357 DoubleValue(250),

358 MakeDoubleAccessor (&RoutingProtocol::transDistance),

359 MakeDoubleChecker<double> ())

360 8

361 return tid;

362 }

363

364 void

365 RoutingProtocol::SetMaxQueuelLen (uint32_t len)

366 {

367 m_maxQueuelLen = len;

368 m_queue.SetMaxQueuelen (len);

369

370 void

371 RoutingProtocol::SetMaxQueueTime (Time t)

372 {

373 m_maxQueueTime = t;

374 m_queue.SetQueueTimeout (t);

375 }

376

377 RoutingProtocol:: RoutingProtocol ()

378 {

379 }

380

381 wvoid

382 RoutingProtocol::DoDispose ()

383 {

384 if (m_energylevel > m_aliveThreshold) {

385 SIMOUT ("Node,"<<ipv4Addr<<" has ,"<<m_energyLevel<<" remaining power.");
386 }

387 m_ipv4d = 0;
388 for (std::map<Ptr<Socket>, Ipv4InterfaceAddress>::iterator iter =

389 m_socketAddresses.begin (); iter != m_socketAddresses.end (); iter++)

390 {

391 iter->first->Close ();

392 }

393 m_socketAddresses.clear ();

394 for (std::map<Ptr<Socket>, Ipv4InterfaceAddress>::iterator iter =

395 m_socketSubnetBroadcastAddresses.begin (); iter != m_socketSubnetBroadcastAddresses.end (); iter++)
396 {

397 iter->first->Close ();

398 }

101

399 m_socketSubnetBroadcastAddresses.clear ();
400 Ipv4RoutingProtocol: :DoDispose () ;

401 }
402
403 void

404 RoutingProtocol::PrintRoutingTable (Ptr<OutputStreamWrapper> stream, Time::Unit unit) const
405 {

406 *stream->GetStream () << "Node: " << m_ipv4->GetObject<Node> ()->GetId ()

407 << "; Time:" << Now ().As (unit)

408 << ", Local time: " << GetObject<Node> ()->GetLocalTime ().As (unit)
409 << ", AODV_Routing table" << std::endl;

410

411 m_routingTable.Print (stream);

412 *stream->GetStream () << std::endl;

413

414

415 int64_t
416 RoutingProtocol::AssignStreams (int64_t stream)

417 A

418 NS_LOG_FUNCTION (this << stream);

419 m_uniformRandomVariable->SetStream (stream);
420 return 1;

421 }

422

423 void

424 RoutingProtocol::Start ()

425 A{

426 NS_LOG_FUNCTION (this);
427 if (m_enableHello)

428 {

429 m_nb.ScheduleTimer ();

430 }

431 m_rreqRatelLimitTimer.SetFunction (&RoutingProtocol::RreqRateLimitTimerExpire,
432 this);

433 m_rreqRatelLimitTimer.Schedule (Seconds (1));

434

435 m_rerrRateLimitTimer.SetFunction (&RoutingProtocol::RerrRateLimitTimerExpire,
436 this);

437 m_rerrRatelLimitTimer.Schedule (Seconds (1));

438

439 // EA-AODV set timer for energy decay

440 m_powerDecayTimer.SetFunction (&RoutingProtocol::PowerDecayTimerExpire, this);
441 m_powerDecayTimer.Schedule(MilliSeconds(2));

442

443 ipv4Addr = m_ipv4->GetAddress (1, 0).GetLocal ();

444 getCoordinates() ;

445 SIMOUT ("Node created,,"<<ipv4Addr<<" at pos: ("<<nodeX<<","<<node¥<<") with initial, power ,"<<m_energyLevel);
446)

447

448 Ptr<Ipv4Route>

449 RoutingProtocol::RouteOutput (Ptr<Packet> p, const Ipv4Header &header,

450 Ptr<NetDevice> oif, Socket::SocketErrno &sockerr)
451 {

452 NS_LOG_FUNCTION (this << header << (oif ? oif->GetIfIndex () : 0));

453 if (!'p)

454 {

455 NS_LOG_DEBUG ("Packet,is ==,0");

456 return LoopbackRoute (header, oif); // later
457 }

458 if (m_socketAddresses.empty ())

459 {

460 sockerr = Socket::ERROR_NOROUTETOHOST;
461 NS_LOG_LOGIC ("No aodv_ interfaces");
462 Ptr<Ipv4Route> route;

463 return route;

464 }

465 sockerr = Socket::ERROR_NOTERROR;
466 Ptr<Ipv4Route> route;

102

467 Ipv4Address dst = header.GetDestination ();
468 RoutingTableEntry rt;
469 if (m_routingTable.LookupValidRoute (dst, rt))

470 {

471 route = rt.GetRoute ();

472 NS_ASSERT (route != 0);

473 NS_LOG_DEBUG ("Exist_route to," << route->GetDestination () << "_from interface " << route->GetSource
= 0);

474 if (oif != 0 && route->GetOutputDevice () != oif)

475 {

476 NS_LOG_DEBUG ("Output device doesn’t match. Dropped.");

477 sockerr = Socket::ERROR_NOROUTETOHOST;

478 return Ptr<Ipv4Route> ();

479 }

480 UpdateRouteLifeTime (dst, m_activeRouteTimeout) ;

481 UpdateRouteLifeTime (route->GetGateway (), m_activeRouteTimeout) ;

482 // EA-AODV POWER DECAY

483 BUGOUT (ipv4Addr<<": jpower decayed for transmission.");

484 double nextHopDistance = powf (GetDistanceBetweenNodes(rt),2);

485 m_energyLevel -= TxConst * powf (nextHopDistance,2);

486 return route;

487 }

488

489 // Valid route not found, in this case we return loopback.

490 // Actual route request will be deferred until packet will be fully formed,

491 // routed to loopback, received from loopback and passed to RouteInput (see below)

492 uint32_t iif = (oif 7 m_ipv4->GetInterfaceForDevice (oif) : -1);

493 DeferredRouteOutputTag tag (iif);

494 NS_LOG_DEBUG ("Valid_Route_ not_ found");

495 if (!p->PeekPacketTag (tag))

496 {

497 p->AddPacketTag (tag);

498 ¥

499 return LoopbackRoute (header, oif);

500

501

502 void

503 RoutingProtocol::DeferredRouteOutput (Ptr<const Packet> p, const Ipv4Header & header,
504 UnicastForwardCallback ucb, ErrorCallback ecb)
505 {

506 NS_LOG_FUNCTION (this << p << header);

507 NS_ASSERT (p != 0 && p !'= Ptr<Packet> ());

508 if (m_energylevel > m_aliveThreshold) {

509 QueueEntry newEntry (p, header, ucb, ecb);

510 bool result = m_queue.Enqueue (newEntry);

511 if (result)

512 {

513 NS_LOG_LOGIC ("Add packet." << p->GetUid () << "_to,queue. Protocol," << (uint16_t) header.GetProtocol
— 0);

514 RoutingTableEntry rt;

515 bool result = m_routingTable.LookupRoute (header.GetDestination (), rt);

516 if (lresult || ((rt.GetFlag () != IN_SEARCH) && result))

517 {

518 NS_LOG_LOGIC ("Send, new RREQ, for outbound, packet to " << header.GetDestination ());

519 SendRequest (header.GetDestination ());

520 }

521 }

522 }

523 }

524

525 Dbool

526 RoutingProtocol::RouteInput (Ptr<const Packet> p, const Ipv4Header &header,

527 Ptr<const NetDevice> idev, UnicastForwardCallback ucb,

528 MulticastForwardCallback mcb, LocalDeliverCallback lcb, ErrorCallback ecb)

529 {

530 NS_LOG_FUNCTION (this << p->GetUid () << header.GetDestination () << idev->GetAddress ());
531 if (m_energyLevel > m_aliveThreshold) {
532 if (m_socketAddresses.empty ())

103

533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594
595
596
597
598
599

{
NS_LOG_LOGIC ("No_aodv interfaces");
return false;
}
NS_ASSERT (m_ipv4 != 0);
NS_ASSERT (p != 0);
// Check if input device supports IP
NS_ASSERT (m_ipv4->GetInterfaceForDevice (idev) >= 0);
int32_t iif = m_ipv4->GetInterfaceForDevice (idev);

Ipv4Address dst = header.GetDestination ();
Ipv4Address origin = header.GetSource ();

// Deferred route request
if (idev == m_lo)
{
DeferredRouteOutputTag tag;
if (p->PeekPacketTag (tag))
{
DeferredRouteOutput (p, header, ucb, ecb);
return true;
}
}

// Duplicate of own packet
if (IsMyOwnAddress (origin))
{
return true;

}

// ADDV is not a multicast routing protocol
if (dst.IsMulticast ())
{
return false;

}

// Broadcast local delivery/forwarding
for (std::map<Ptr<Socket>, Ipv4InterfaceAddress>::const_iterator j =
m_socketAddresses.begin (); j !'= m_socketAddresses.end (); ++j)
{
Ipv4InterfaceAddress iface = j->second;
if (m_ipv4->GetInterfaceForAddress (iface.GetLocal ()) == iif)
{
if (dst == iface.GetBroadcast () || dst.IsBroadcast ())
{
if (m_dpd.IsDuplicate (p, header))
{
NS_LOG_DEBUG ("Duplicated, packet." << p->GetUid () << " from " << origin << ". Drop.");
return true;
}
UpdateRouteLifeTime (origin, m_activeRouteTimeout);
Ptr<Packet> packet = p->Copy (O);
if (1lcb.IsNull () == false)
{
NS_LOG_LOGIC ("Broadcast local delivery to," << iface.GetLocal ());
lcb (p, header, iif);
// Fall through to additional processing

else
{
NS_LOG_ERROR ("Unable to deliver jpacket locally, due to null callback," << p->GetUid () << "
— from," << origin);
ecb (p, header, Socket::ERROR_NOROUTETOHOST) ;
}
if (!m_enableBroadcast)
{
return true;

}

104

600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650

651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666

if (header.GetProtocol () == UdpL4Protocol::PROT_NUMBER)
{
UdpHeader udpHeader;
p—>PeekHeader (udpHeader);
if (udpHeader.GetDestinationPort () == EA_AODV_PORT)
{
// AODV packets sent in broadcast are already managed
return true;
}
}
if (header.GetTtl () > 1)
{
NS_LOG_LOGIC ("Forward broadcast. TTL," << (uint16_t) header.GetTtl ());
RoutingTableEntry toBroadcast;
if (m_routingTable.LookupRoute (dst, toBroadcast))
{
Ptr<Ipv4Route> route = toBroadcast.GetRoute ();
ucb (route, packet, header);

else
{
NS_LOG_DEBUG ("No route ito forward broadcast. Drop packet," << p->GetUid ());
}
}
else
{
NS_LOG_DEBUG ("TTL_exceeded. Drop packet," << p->GetUid ());
}
return true;

}
}

// Unicast local delivery
if (m_ipv4->IsDestinationAddress (dst, iif))
{
UpdateRouteLifeTime (origin, m_activeRouteTimeout);
RoutingTableEntry toOrigin;
if (m_routingTable.LookupValidRoute (origin, toOrigin))
{
UpdateRouteLifeTime (toOrigin.GetNextHop (), m_activeRouteTimeout);
m_nb.Update (toOrigin.GetNextHop (), m_activeRouteTimeout) ;
}
if (lcb.IsNull () == false)
{
NS_LOG_LOGIC ("Unicast local delivery to," << dst);
lcb (p, header, iif);
}
else
{
NS_LOG_ERROR ("Unable to deliver packet locally due to null callback," << p->GetUid () << " from "
— << origin);
ecb (p, header, Socket::ERROR_NOROUTETOHOST) ;
}
return true;

}

// Check if input device supports IP forwarding
if (m_ipv4->IsForwarding (iif) == false)
{
NS_LOG_LOGIC ("Forwarding, disabled, for this interface");
ecb (p, header, Socket::ERROR_NOROUTETOHOST) ;
return true;

}

// Forwarding
return Forwarding (p, header, ucb, ecb);
} else return false;

105

667 1}

668

669 bool

670 RoutingProtocol::Forwarding (Ptr<const Packet> p, const Ipv4Header & header,

671 UnicastForwardCallback ucb, ErrorCallback ecb)

672 {

673 NS_LOG_FUNCTION (this);

674 if (m_energylevel > m_aliveThreshold) {

675 Ipv4Address dst = header.GetDestination ();

676 Ipv4Address origin = header.GetSource ();

677 m_routingTable.Purge () ;

678 RoutingTableEntry toDst;

679 if (m_routingTable.LookupRoute (dst, toDst))

680 {

681 if (toDst.GetFlag () == VALID)

682 {

683 Ptr<Ipv4Route> route = toDst.GetRoute ();

684 NS_LOG_LOGIC (route->GetSource () << " forwarding to," << dst << " from_" << origin << " packet"
< << p—>GetUid ());

685

686 /*

687 * Each time a route is used to forward a data packet, its Active Route

688 * Lifetime field of the source, destination and the next hop on the

689 * path to the destination is updated to be no less than the current

690 * time plus ActiveRouteTimeout.

691 */

692 UpdateRouteLifeTime (origin, m_activeRouteTimeout);

693 UpdateRouteLifeTime (dst, m_activeRouteTimeout);

694 UpdateRouteLifeTime (route->GetGateway (), m_activeRouteTimeout);

695 /*

696 * Since the route between each originator and destination pair is expected to be symmetric, the

697 * Active Route Lifetime for the previous hop, along the reverse path back to the IP source, is
— also updated

698 * to be no less than the current time plus ActiveRouteTimeout

699 */

700 RoutingTableEntry toOrigin;

701 m_routingTable.LookupRoute (origin, toOrigin);

702 UpdateRouteLifeTime (toOrigin.GetNextHop (), m_activeRouteTimeout) ;

703

704 m_nb.Update (route->GetGateway (), m_activeRouteTimeout);

705 m_nb.Update (toOrigin.GetNextHop (), m_activeRouteTimeout) ;

706

707 ucb (route, p, header);

708 return true;

709 }

710 else

711 {

712 if (toDst.GetValidSegNo ())

713 {

714 SendRerrWhenNoRouteToForward (dst, toDst.GetSegNo (), origin);

715 NS_LOG_DEBUG ("Drop packet," << p->GetUid () << " because no route to_ forward it.");

716 return false;

717 }

718 }

719 }

720 NS_LOG_LOGIC ("route mot,found to," << dst << "._Send RERR message.");

721 NS_LOG_DEBUG ("Drop packet" << p->GetUid () << " because no route to forward it.");

722 SendRerrWhenNoRouteToForward (dst, O, origin);

723 return false;

724 } else return false;

725 }

726

727 void

728 RoutingProtocol::SetIpv4 (Ptr<Ipv4> ipv4)

729 A

730 NS_ASSERT (ipv4 != 0);

731 NS_ASSERT (m_ipv4 == 0);

732

106

733 m_ipv4d = ipvé;

734
735 // Create lo route. It is asserted that the only one interface up for now is loopback
736 NS_ASSERT (m_ipv4->GetNInterfaces () == 1 && m_ipv4->GetAddress (0, 0).GetLocal () == Ipv4Address

— ("127.0.0.1"));

737 m_lo = m_ipv4->GetNetDevice (0);

738 NS_ASSERT (m_lo != 0);

739 // Remember lo route

740 RoutingTableEntry rt (/*device=*/ m_lo, /*dst=+*/ Ipv4Address::GetLoopback (), /*know seqno=*/ true,
— /*seqno=%/ 0,

741 /*iface=+/ Ipv4InterfaceAddress (Ipv4Address::GetLoopback (), Ipv4Mask
— ("255.0.0.0")),

742 /*hops=%/ 1, /*next hop=+/ Ipv4Address::GetLoopback (),

743 /*lifetime=+/ Simulator::GetMaximumSimulationTime ());

744 m_routingTable.AddRoute (rt);

745

746 Simulator::ScheduleNow (&RoutingProtocol::Start, this);

747}

748

749 void

750 RoutingProtocol::NotifyInterfaceUp (uint32_t i)

751 {

752 NS_LOG_FUNCTION (this << m_ipv4->GetAddress (i, 0).GetLocal ());
753 Ptr<Ipv4L3Protocol> 13 = m_ipv4->GetObject<Ipv4L3Protocol> ();
754 if (13->GetNAddresses (i) > 1)

755 {
756 NS_LOG_WARN ("EA_AODV,does not work with more then one address per each interface.");
757 }

758 Ipv4InterfaceAddress iface = 13->GetAddress (i, 0);

759 if (iface.GetLocal () == Ipv4Address ("127.0.0.1"))

760 {

761 return;

762 ¥

763

764 // Create a socket to listen only on this interface

765 Ptr<Socket> socket = Socket::CreateSocket (GetObject<Node> (),

766 UdpSocketFactory: :GetTypeId ());
767 NS_ASSERT (socket != 0);

768 socket->SetRecvCallback (MakeCallback (&RoutingProtocol::RecvEaAodv, this));
769 socket->BindToNetDevice (13->GetNetDevice (i));

770 socket->Bind (InetSocketAddress (iface.GetLocal (), EA_AODV_PORT));

771 socket->SetAllowBroadcast (true);

772 socket->SetIpRecvTtl (true);

773 m_socketAddresses.insert (std::make_pair (socket, iface));
774

775 // create also a subnet broadcast socket

776 socket = Socket::CreateSocket (GetObject<Node> (),

s UdpSocketFactory: :GetTypeld ());

778 NS_ASSERT (socket != 0);

779 socket->SetRecvCallback (MakeCallback (&RoutingProtocol::RecvEaAodv, this));
780 socket->BindToNetDevice (13->GetNetDevice (i));

781 socket->Bind (InetSocketAddress (iface.GetBroadcast (), EA_AODV_PORT));

782 socket->SetAllowBroadcast (true);

783 socket->SetIpRecvTtl (true);

784 m_socketSubnetBroadcastAddresses.insert (std::make_pair (socket, iface));
785

786 // Add local broadcast record to the routing table

787 Ptr<NetDevice> dev = m_ipv4->GetNetDevice (m_ipv4->GetInterfaceForAddress (iface.GetLocal ()));
788 RoutingTableEntry rt (/*device=+/ dev, /*dst=+/ iface.GetBroadcast (), /*know seqno=*/ true, /*seqno=%/ 0,
— /*iface=x/ iface,
789 /*hops=+/ 1, /*next hop=+/ iface.GetBroadcast (), /*lifetime=x/
< Simulator::GetMaximumSimulationTime ());
790 m_routingTable.AddRoute (rt);

791

792 if (13->GetInterface (i)->GetArpCache ())

793 {

794 m_nb.AddArpCache (13->GetInterface (i)->GetArpCache ());
795 }

107

796

797 // Allow neighbor manager use this interface for layer 2 feedback if possible
798 Ptr<WifiNetDevice> wifi = dev->GetObject<WifiNetDevice> ();

799 if (wifi == 0)

800 {
801 return;
802 }

803 Ptr<WifiMac> mac = wifi->GetMac ();
804 if (mac == 0)

805 {

806 return;

807 }

808

809 mac->TraceConnectWithoutContext ("TxErrHeader", m_nb.GetTxErrorCallback ());
810 }

811

812 void

813 RoutingProtocol::NotifyInterfaceDown (uint32_t i)

814 {

815 NS_LOG_FUNCTION (this << m_ipv4->GetAddress (i, 0).GetLocal ());
816

817 // Disable layer 2 link state monitoring (if possible)

818 Ptr<Ipv4L3Protocol> 13 = m_ipv4->GetObject<Ipv4L3Protocol> ();
819 Ptr<NetDevice> dev = 13->GetNetDevice (i);

820 Ptr<WifiNetDevice> wifi = dev->GetObject<WifiNetDevice> ();

821 if (wifi !'= 0)

822 {

823 Ptr<WifiMac> mac = wifi->GetMac ()->GetObject<AdhocWifiMac> ();
824 if (mac != 0)

825 {

826 mac->TraceDisconnectWithoutContext ("TxErrHeader",

827 m_nb.GetTxErrorCallback ());
828 m_nb.DelArpCache (13->GetInterface (i)->GetArpCache ());
829 }

830 ¥

831

832 // Close socket

833 Ptr<Socket> socket = FindSocketWithInterfaceAddress (m_ipv4->GetAddress (i, 0));
834 NS_ASSERT (socket);

835 socket->Close ();

836 m_socketAddresses.erase (socket);

837

838 // Close socket

839 socket = FindSubnetBroadcastSocketWithInterfaceAddress (m_ipv4->GetAddress (i, 0));
840 NS_ASSERT (socket);

841 socket->Close ();

842 m_socketSubnetBroadcastAddresses.erase (socket);
843

844 if (m_socketAddresses.empty ())

845 {

846 NS_LOG_LOGIC ("No aodv_ interfaces");

847 m_htimer.Cancel ();

848 m_nb.Clear ();

849 m_routingTable.Clear ();

850 return;

851 ¥

852 m_routingTable.DeleteAllRoutesFromInterface (m_ipv4->GetAddress (i, 0));
853 }

854

855 void

856 RoutingProtocol::NotifyAddAddress (uint32_t i, Ipv4InterfaceAddress address)
857 {

858 NS_LOG_FUNCTION (this << "_interface " << i << " address," << address);
859 Ptr<Ipv4L3Protocol> 13 = m_ipv4->GetObject<Ipv4L3Protocol> ();

860 if (113->IsUp (i))

861 {
862 return;
863 }

108

864 if (13->GetNAddresses (i) == 1)

865 {

866 Ipv4InterfaceAddress iface = 13->GetAddress (i, 0);

867 Ptr<Socket> socket = FindSocketWithInterfaceAddress (iface);

868 if (!socket)

869 {

870 if (iface.GetLocal () == Ipv4Address ("127.0.0.1"))

871 {

872 return;

873 ¥

874 // Create a socket to listen only on this interface

875 Ptr<Socket> socket = Socket::CreateSocket (GetObject<Node> (),

876 UdpSocketFactory: :GetTypeIld ());

877 NS_ASSERT (socket != 0);

878 socket->SetRecvCallback (MakeCallback (&RoutingProtocol::RecvEaAodv,this));

879 socket->BindToNetDevice (13->GetNetDevice (i));

880 socket->Bind (InetSocketAddress (iface.GetLocal (), EA_AODV_PORT));

881 socket->SetAllowBroadcast (true);

882 m_socketAddresses.insert (std::make_pair (socket, iface));

883

884 // create also a subnet directed broadcast socket

885 socket = Socket::CreateSocket (GetObject<Node> (),

886 UdpSocketFactory: :GetTypeld ());

887 NS_ASSERT (socket != 0);

888 socket->SetRecvCallback (MakeCallback (&RoutingProtocol::RecvEaAodv, this));

889 socket->BindToNetDevice (13->GetNetDevice (i));

890 socket->Bind (InetSocketAddress (iface.GetBroadcast (), EA_AODV_PORT));

891 socket->SetAllowBroadcast (true);

892 socket->SetIpRecvTtl (true);

893 m_socketSubnetBroadcastAddresses.insert (std::make_pair (socket, iface));

894

895 // Add local broadcast record to the routing table

896 Ptr<NetDevice> dev = m_ipv4->GetNetDevice (

897 m_ipv4->GetInterfaceForAddress (iface.GetLocal ()));

898 RoutingTableEntry rt (/*device=%/ dev, /*dst=%/ iface.GetBroadcast (), /*know segno=%/ true,

899 /*seqno=*/ 0, /*iface=*/ iface, /*hops=*/ 1,

900 /*next hop=+/ iface.GetBroadcast (), /*lifetime=*/

< Simulator::GetMaximumSimulationTime ());

901 m_routingTable.AddRoute (rt);

902 }

903 }

904 else

905 {

906 NS_LOG_LOGIC ("EA_AODV does not work with more then one address per each interface. Ignore added,,
< address");

907 }

908 }

909

910 void

911 RoutingProtocol::NotifyRemoveAddress (uint32_t i, Ipv4InterfaceAddress address)
912 {

913 NS_LOG_FUNCTION (this);

914 Ptr<Socket> socket = FindSocketWithInterfaceAddress (address);

915 if (socket)

916 {

917 m_routingTable.DeleteAllRoutesFromInterface (address);

918 socket->Close ();

919 m_socketAddresses.erase (socket);

920

921 Ptr<Socket> unicastSocket = FindSubnetBroadcastSocketWithInterfaceAddress (address);
922 if (unicastSocket)

923 {

924 unicastSocket->Close ();

925 m_socketAddresses.erase (unicastSocket);

926 }

927

928 Ptr<Ipv4L3Protocol> 13 = m_ipv4->GetObject<Ipv4L3Protocol> ();
929 if (13->GetNAddresses (i))

109

930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957

958

959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995

Ipv4InterfaceAddress iface = 13->GetAddress (i, 0);

// Create a socket to listen only on this interface

Ptr<Socket> socket = Socket::CreateSocket (GetObject<Node> (),
UdpSocketFactory: :GetTypeId ());

NS_ASSERT (socket != 0);

socket->SetRecvCallback (MakeCallback (&RoutingProtocol::RecvEaAodv, this));

// Bind to any IP address so that broadcasts can be received

socket->BindToNetDevice (13->GetNetDevice (i));

socket->Bind (InetSocketAddress (iface.GetLocal (), EA_AODV_PORT));

socket->SetAllowBroadcast (true);

socket->SetIpRecvTtl (true);

m_socketAddresses.insert (std::make_pair (socket, iface));

// create also a unicast socket
socket = Socket::CreateSocket (GetObject<Node> (),
UdpSocketFactory: :GetTypeIld ());
NS_ASSERT (socket != 0);
socket->SetRecvCallback (MakeCallback (&RoutingProtocol::RecvEaAodv, this));
socket->BindToNetDevice (13->GetNetDevice (i));
socket->Bind (InetSocketAddress (iface.GetBroadcast (), EA_AODV_PORT));
socket->SetAllowBroadcast (true);
socket->SetIpRecvTtl (true);
m_socketSubnetBroadcastAddresses.insert (std::make_pair (socket, iface));

// Add local broadcast record to the routing table
Ptr<NetDevice> dev = m_ipv4->GetNetDevice (m_ipv4->GetInterfaceForAddress (iface.GetLocal ()));
RoutingTableEntry rt (/*device=+/ dev, /*dst=+/ iface.GetBroadcast (), /*know seqno=*/ true,
— /*seqno=%*/ 0, /*iface=%/ iface,
/*hops=#*/ 1, /*next hop=*/ iface.GetBroadcast (), /*lifetime=x/
< Simulator::GetMaximumSimulationTime ());

m_routingTable.AddRoute (rt);

}

if (m_socketAddresses.empty ())

{
NS_LOG_LOGIC ("No,aodv_interfaces");
m_htimer.Cancel ();
m_nb.Clear ();
m_routingTable.Clear ();

return;
}
¥
else
{
NS_LOG_LOGIC ("Remove address not participating in EA_AQODV operation");

}
}
bool
RoutingProtocol::IsMyOwnAddress (Ipv4Address src)
{

NS_LOG_FUNCTION (this << src);
for (std::map<Ptr<Socket>, Ipv4InterfaceAddress>::const_iterator j =
m_socketAddresses.begin (); j != m_socketAddresses.end (); ++j)
{
Ipv4InterfaceAddress iface = j->second;
if (src == iface.GetLocal ())
{
return true;
}
}
return false;

}

Ptr<Ipv4Route>
RoutingProtocol: :LoopbackRoute (const Ipv4Header & hdr, Ptr<NetDevice> o0if) const

{
NS_LOG_FUNCTION (this << hdr);

110

996 NS_ASSERT (m_lo != 0);
997 Ptr<Ipv4Route> rt = Create<Ipv4Route> ();
998 rt->SetDestination (hdr.GetDestination ());

999 //

1000 // Source address selection here is tricky. The loopback route is
1001 // returned when AODV does not have a route; this causes the packet
1002 // to be looped back and handled (cached) in RouteInput() method
1003 // while a route is found. However, connection-oriented protocols
1004 // like TCP need to create an endpoint four-tuple (src, src port,
1005 // dst, dst port) and create a pseudo-header for checksumming. So,
1006 // AODV needs to guess correctly what the eventual source address
1007 // will be.

1008 //

1009 // For single interface, single address nodes, this is not a problem.
1010 // When there are possibly multiple outgoing interfaces, the policy
1011 // implemented here is to pick the first available AODV interface.
1012 // If RouteOutput() caller specified an outgoing interface, that
1013 // further constrains the selection of source address

1014 //

1015 std: :map<Ptr<Socket>, Ipv4InterfaceAddress>::const_iterator j = m_socketAddresses.begin ();
1016 if (oif)

1017 {

1018 // Iterate to find an address on the oif device

1019 for (j = m_socketAddresses.begin (); j != m_socketAddresses.end (); ++j)
1020 {

1021 Ipv4Address addr = j->second.GetLocal ();

1022 int32_t interface = m_ipv4->GetInterfaceForAddress (addr);
1023 if (oif == m_ipv4->GetNetDevice (static_cast<uint32_t> (interface)))
1024 {

1025 rt->SetSource (addr);

1026 break;

1027 }

1028 }

1029 }

1030 else

1031 {

1032 rt->SetSource (j->second.GetLocal ());

1033 }

1034 NS_ASSERT_MSG (rt->GetSource () != Ipv4Address (), "Valid, ,AODV source address not_found");
1035 rt->SetGateway (Ipv4Address ("127.0.0.1"));

1036 rt->SetOutputDevice (m_lo);

1037 return rt;

1038

1039

1040 void

1041 RoutingProtocol::SendRequest (Ipv4Address dst)

1042 {

1043 if (m_energyLevel > m_aliveThreshold) {

1044 NS_LOG_FUNCTION (this << dst);

1045 // A node SHOULD NOT originate more than RREQ_RATELIMIT RREQ messages per second.
1046 if (m_rreqCount == m_rreqRateLimit)

1047 {

1048 // EA-AODV to make decay functions work with idle time, make the time portion
1049 // of the Simulator::Schedule function a variable:

1050 // Simulator::Schedule (m_rreqRatelLimitTimer.GetDelayLeft () + MicroSeconds (100),
1051 // &RoutingProtocol::SendRequest, this, dst);

1052 // into:

1053 // Time sendLatency = m_rreqRatelLimitTimer.GetDelayLeft() + MicroSeconds(100);
1054 // energylLevel -= (sendLatency*idleDecay + sendDecay)

1055 // Simulator::Schedule (sendLatency, &RoutingProtocol::SendRequest,this,dest);
1056

1057 Simulator::Schedule (m_rreqRatelLimitTimer.GetDelayLeft () + MicroSeconds (100),
1058 &RoutingProtocol: :SendRequest, this, dst);

1059 return;

1060 }

1061 else

1062 {

1063 m_rreqCount++;

111

1064 }

1065 // Create RREQ header

1066 RreqHeader rreqHeader;

1067 rreqHeader.SetDst (dst);

1068

1069 RoutingTableEntry rt;

1070 // Using the Hop field in Routing Table to manage the expanding ring search
1071 uintl16_t ttl = m_ttlStart;

1072 if (m_routingTable.LookupRoute (dst, rt))
1073 {

1074 if (rt.GetFlag () != IN_SEARCH)

1075 {

1076 ttl = std::min<uint16_t> (rt.GetHop () + m_ttlIncrement, m_netDiameter);
1077

1078 else

1079 {

1080 ttl = rt.GetHop () + m_ttlIncrement;
1081 if (ttl > m_ttlThreshold)

1082 {

1083 ttl = m_netDiameter;

1084 }

1085 }

1086 if (ttl == m_netDiameter)

1087 {

1088 rt.IncrementRreqCnt ();

1089 ¥

1090 if (rt.GetValidSegNo ())

1091 {

1092 rreqHeader.SetDstSeqno (rt.GetSeqNo ());
1093

1094 else

1095 {

1096 rreqHeader.SetUnknownSeqno (true);
1097 }

1098 rt.SetHop (ttl);

1099 rt.SetFlag (IN_SEARCH);

1100 rt.SetLifeTime (m_pathDiscoveryTime);
1101 m_routingTable.Update (rt);

1102 }

1103 else

1104 {

1105 rreqHeader.SetUnknownSegno (true);

1106 Ptr<NetDevice> dev = 0;

1107 RoutingTableEntry newEntry (

1108 /*device=*/ dev, /*dst=+/ dst, /*validSeqNo=+*/ false, /*seqno=*/ 0,
1109 /*iface=+/ Ipv4InterfaceAddress (),/*hop=+/ ttl, /*nextHop=+/ Ipv4Address (),
1110 /*1lifeTime=*/ m_pathDiscoveryTime, 0, O
1111)3

1112 // Check if TtlStart == NetDiameter
1113 if (ttl == m_netDiameter)

1114 {

1115 newEntry.IncrementRreqCnt ();

1116 }

1117 newEntry.SetFlag (IN_SEARCH);

1118 m_routingTable.AddRoute (newEntry);
1119 }

1120

1121 if (m_gratuitousReply)

1122 {

1123 rreqHeader.SetGratuitousRrep (true);
1124 }

1125 if (m_destinationOnly)

1126 {

1127 rreqHeader.SetDestinationOnly (true);
1128 }

1129

1130 m_seqNo++;

1131 rreqHeader.SetOriginSeqno (m_segNo);

112

1132 m_requestId++;

1133 rreqHeader.SetId (m_requestId);

1134

1135 // Send RREQ as subnet directed broadcast from each interface used by aodv

1136 for (std::map<Ptr<Socket>, Ipv4InterfaceAddress>::const_iterator j =

1137 m_socketAddresses.begin (); j != m_socketAddresses.end (); ++j)

1138 {

1139 Ptr<Socket> socket = j->first;

1140 Ipv4InterfaceAddress iface = j->second;

1141

1142 rreqHeader.SetOrigin (iface.GetLocal ());

1143 m_rreqldCache.IsDuplicate (iface.GetLocal (), m_requestId);

1144

1145 Ptr<Packet> packet = Create<Packet> ();

1146 SocketIpTtlTag tag;

1147 tag.SetTtl (ttl);

1148 packet->AddPacketTag (tag);

1149 packet->AddHeader (rreqHeader);

1150 TypeHeader tHeader (EA_AODVTYPE_RREQ);

1151 packet->AddHeader (tHeader);

1152 // Send to all-hosts broadcast if on /32 addr, subnet-directed otherwise

1153 Ipv4Address destination;

1154 if (iface.GetMask () == Ipv4Mask::GetOnes ())

1155 {

1156 destination = Ipv4Address ("255.255.255.255");

1157

1158 else

1159 {

1160 destination = iface.GetBroadcast ();

1161 }

1162 //BUGOUT (ipv4Addr<<": Send RREQ with id " << rreqHeader.GetId () << ", X: "<<rregHeader.GetLocX()

1163 //<<", Y: "<<rreqHeader.GetLocY()<<", and energy: "<<rreqHeader.GetEnergyAccum());

1164 NS_LOG_DEBUG ("Send, RREQ_with,id," << rreqHeader.GetId () << " to,socket");

1165 m_lastBcastTime = Simulator::Now ();

1166 // EA-AODV calculate time

1167 // NS3 Website

1168 // https://www.nsnam.org/doxygen/classns3_1_1_time.html

1169 Simulator::Schedule (Time (MilliSeconds (m_uniformRandomVariable->GetInteger (10, 20))),
— &RoutingProtocol::SendTo, this, socket, packet, destination);

1170 }

1171 ScheduleRreqRetry (dst);

1172 }

1173}

1174

1175 void

1176 RoutingProtocol::SendTo (Ptr<Socket> socket, Ptr<Packet> packet, Ipv4Address destination)
1177 {

1178 // Energy Model

1179 RoutingTableEntry rt;

1180 m_routingTable.LookupRoute (destination,rt);

1181 BUGOUT (ipv4Addr<<": power decay for transmission during route discovery.");
1182 m_energylLevel -= TxConst * powf(GetDistanceBetweenNodes(rt),2);

1183 socket->SendTo (packet, O, InetSocketAddress (destination, EA_AODV_PORT));
1184

1185

1186 void

1187 RoutingProtocol::ScheduleRreqRetry (Ipv4Address dst)

1188 {

1189 NS_LOG_FUNCTION (this << dst);
1190 if (m_addressReqTimer.find (dst) == m_addressReqTimer.end ())

1191 {

1192 Timer timer (Timer::CANCEL_ON_DESTROY);
1193 m_addressReqTimer [dst] = timer;

1194 }

1195 m_addressReqTimer [dst] .SetFunction (&RoutingProtocol::RouteRequestTimerExpire, this);
1196 m_addressReqTimer [dst] .Remove ();

1197 m_addressReqTimer [dst] . SetArguments (dst) ;

1198 RoutingTableEntry rt;

113

1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244

1245
1246
1247
1248
1249
1250
1251

1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

}

m_routingTable.LookupRoute (dst, rt);
Time retry;
if (rt.GetHop () < m_netDiameter)

{

retry = 2 * m_nodeTraversalTime * (rt.GetHop () + m_timeoutBuffer);

}
else

{

NS_ABORT_MSG_UNLESS (rt.GetRreqCnt () > 0, "Unexpected, value for GetRreqCount (") ;
uint16_t backoffFactor = rt.GetRreqCnt () - 1;
NS_LOG_LOGIC ("Applying binary exponential backoff factor," << backoffFactor);
retry = m_netTraversalTime * (1 << backoffFactor);

}

m_addressReqTimer [dst] .Schedule (retry);
NS_LOG_LOGIC ("Scheduled, RREQ retry ,in " << retry.GetSeconds () << " seconds");

void
RoutingProtocol: :RecvEaAodv (Ptr<Socket> socket)

{

NS_LOG_FUNCTION (this << socket);

if (m_energylevel >= m_aliveThreshold) {
//std::string cmd = "/NodeList/";
//cmd += m_ipv4->GetObject<Node>()->GetId();
//cmd += "/DeviceList/*/$ns3::RangePropagationLossModel: :MaxRange";
//Config: :Set (cmd,DoubleValue(100.0));

Address sourceAddress;
Ptr<Packet> packet = socket->RecvFrom (sourceAddress);
InetSocketAddress inetSourceAddr = InetSocketAddress::ConvertFrom (sourceAddress);
Ipv4Address sender = inetSourceAddr.GetIpv4d ();
Ipv4Address receiver;

if (m_socketAddresses.find (socket)

{

receiver = m_socketAddresses[socket].GetLocal ();

}

else if (m_socketSubnetBroadcastAddresses.find (socket)

{

'= m_socketAddresses.end ())

!= m_socketSubnetBroadcastAddresses.end ())

receiver = m_socketSubnetBroadcastAddresses[socket].GetLocal ();

else

{

NS_ASSERT_MSG (false, "Received,a packet, from an unknown socket");

}

NS_LOG_DEBUG ("EA_AODV node " << this << " received,a EA_AODV packet from " << sender << " to," <<

< receiver);

UpdateRouteToNeighbor (sender, receiver);
TypeHeader tHeader (EA_AODVTYPE_RREQ);
packet->RemoveHeader (tHeader);

if (!tHeader.IsValid ())

{

NS_LOG_DEBUG ("EA_AODV message " << packet->GetUid () << "_with unknown, type received: " <<

< tHeader.Get () << ". Drop");

return; // drop

}

switch (tHeader.Get ())

{

case EA_AODVTYPE_RREQ:

{

}

RecvRequest (packet, receiver, sender);
break;

case EA_AODVTYPE_RREP:

{

RecvReply (packet, receiver, sender);
break;

114

1265 }

1266 case EA_AODVTYPE_RERR:

1267 {

1268 RecvError (packet, sender);

1269 break;

1270 }

1271 case EA_AODVTYPE_RREP_ACK:

1272 {

1273 RecvReplyAck (sender);

1274 break;

1275 }

1276 }

1277 }

1278 }

1279

1280 bool

1281 RoutingProtocol::UpdateRoutelLifeTime (Ipv4Address addr, Time lifetime)
1282 {

1283 NS_LOG_FUNCTION (this << addr << lifetime);
1284 RoutingTableEntry rt;

1285 if (m_routingTable.LookupRoute (addr, rt))

1286 {

1287 if (rt.GetFlag () == VALID)

1288 {

1289 NS_LOG_DEBUG ("Updating VALID route");

1290 rt.SetRreqCnt (0);

1291 rt.SetLifeTime (std::max (lifetime, rt.GetLifeTime ()));

1292 m_routingTable.Update (rt);

1293 return true;

1294 }

1295 ¥

1296 return false;

1297 }

1298

1299 void

1300 RoutingProtocol::UpdateRouteToNeighbor (Ipv4Address sender, Ipv4Address receiver)
1301 {

1302 NS_LOG_FUNCTION (this << "sender, " << sender << "_receiver " << receiver);

1303 RoutingTableEntry toNeighbor;
1304 if (!m_routingTable.LookupRoute (sender, toNeighbor))

1305 {
1306 Ptr<NetDevice> dev = m_ipv4->GetNetDevice (m_ipv4->GetInterfaceForAddress (receiver));
1307 RoutingTableEntry newEntry (/*device=*/ dev, /*dst=*/ sender, /*know seqno=%/ false, /*seqno=*/ 0,
1308 /*iface=+/ m_ipv4->GetAddress (m_ipv4->GetInterfaceForAddress

< (receiver), 0),
1309 /*hops=+/ 1, /*next hop=+*/ sender, /*lifetime=*/

< m_activeRouteTimeout) ;
1310 m_routingTable.AddRoute (newEntry) ;
1311 ¥
1312 else
1313 {
1314 Ptr<NetDevice> dev = m_ipv4->GetNetDevice (m_ipv4->GetInterfaceForAddress (receiver));
1315 if (toNeighbor.GetValidSeqNo () && (toNeighbor.GetHop () == 1) && (toNeighbor.GetOutputDevice () == dev))
1316 {
1317 toNeighbor.SetLifeTime (std::max (m_activeRouteTimeout, toNeighbor.GetLifeTime ()));
1318
1319 else
1320 {
1321 RoutingTableEntry newEntry (/*device=*/ dev, /*dst=*/ sender, /*know seqno=%/ false, /*seqno=*/ 0,
1322 /*iface=*/ m_ipv4->GetAddress (m_ipv4->GetInterfaceForAddress

< (receiver), 0),
1323 /*hops=+/ 1, /*next hop=*/ sender, /*lifetime=*/ std::max
— (m_activeRouteTimeout, toNeighbor.GetLifeTime ()));

1324 m_routingTable.Update (newEntry);
1325 }
1326 }
1327
1328 1}

115

1329

1330 void

1331 RoutingProtocol::RecvRequest (Ptr<Packet> p, Ipv4Address receiver, Ipv4Address src)
1332 {

1333 NS_LOG_FUNCTION (this);

1334 RreqHeader rreqHeader;

1335 p->RemoveHeader (rreqHeader);

1336

1337 // A node ignores all RREQs received from any node in its blacklist
1338 RoutingTableEntry toPrev;

1339 if (m_routingTable.LookupRoute (src, toPrev))

1340 {

1341 if (toPrev.IsUnidirectional ())

1342 {

1343 NS_LOG_DEBUG ("Ignoring, RREQ from node in blacklist");
1344 return;

1345 }

1346 }

1347

1348 uint32_t id = rreqHeader.GetId ();

1349 Ipv4Address origin = rreqHeader.GetOrigin ();

1350

1351 /*

1352 * Node checks to determine whether it has received a RREQ with the same Originator IP Address and RREQ ID.
1353 * If such a RREQ has been received, the node silently discards the newly received RREQ.
1354 */

1355 if (m_rreqldCache.IsDuplicate (origin, id))

1356 {

1357 NS_LOG_DEBUG ("Ignoring, RREQ due to duplicate");

1358 return;

1359 ¥

1360

1361 // Increment RREQ hop count
1362 uint8_t hop = rreqHeader.GetHopCount () + 1;
1363 rreqHeader.SetHopCount (hop);

1364

1365 /*

1366 * When the reverse route is created or updated, the following actions on the route are also carried out:

1367 * 1. the Originator Sequence Number from the RREQ is compared to the corresponding destination sequence
— number

1368 * in the route table entry and copied if greater than the existing value there

1369 * 2. the valid sequence number field is set to true;

1370 * 3. the next hop in the routing table becomes the node from which the RREQ was received

1371 * 4. the hop count is copied from the Hop Count in the RREQ message;

1372 * 5. the Lifetime is set to be the maximum of (ExistinglLifetime, MinimalLifetime), where

1373 * MinimalLifetime = current time + 2x*NetTraversalTime - 2*HopCount*NodeTraversalTime

1374 */
1375 RoutingTableEntry toOrigin;
1376 if (!m_routingTable.LookupRoute (origin, toOrigin))

1377 {

1378 Ptr<NetDevice> dev = m_ipv4->GetNetDevice (m_ipv4->GetInterfaceForAddress (receiver));

1379 RoutingTableEntry newEntry (/+device=*/ dev, /*dst=#/ origin, /*validSeno=#/ true, /*segNo=*/

< rreqHeader.GetOriginSeqno (),

1380 /*iface=*/ m_ipv4->GetAddress (m_ipv4->GetInterfaceForAddress
— (receiver), 0), /*hops=+/ hop,

1381 /*nextHop*/ src, /*timeLife=+/ Time ((2 * m_netTraversalTime - 2 *
< hop * m_nodeTraversalTime)), 0, 0);

1382 m_routingTable.AddRoute (newEntry);

1383 }

1384 else

1385 {

1386 if (toOrigin.GetValidSeqNo ())

1387 {

1388 if (int32_t (rreqHeader.GetOriginSeqno ()) - int32_t (toOrigin.GetSegNo ()) > 0)

1389 {

1390 toOrigin.SetSeqNo (rreqHeader.GetOriginSeqno ());

1391 }

1392 }

116

1393 else

1394 {

1395 toOrigin.SetSeqNo (rreqHeader.GetOriginSeqno ());

1396 }

1397 to0Origin.SetValidSeqNo (true);

1398 toOrigin.SetNextHop (src);

1399 toOrigin.SetOutputDevice (m_ipv4->GetNetDevice (m_ipv4->GetInterfaceForAddress (receiver)));
1400 toOrigin.SetInterface (m_ipv4->GetAddress (m_ipv4->GetInterfaceForAddress (receiver), 0));
1401 toOrigin.SetHop (hop);

1402 toOrigin.SetLifeTime (std::max (Time (2 * m_netTraversalTime - 2 * hop * m_nodeTraversalTime),
1403 toOrigin.GetLifeTime ()));

1404 m_routingTable.Update (toOrigin);

1405 //m_nb.Update (src, Time (AllowedHelloLoss * HelloInterval));

1406 }

1407

1408

1409 RoutingTableEntry toNeighbor;
1410 if (!m_routingTable.LookupRoute (src, toNeighbor))

1411 {

1412 NS_LOG_DEBUG ("Neighbor:" << src << " mot_found,in routing table. Creating an entry");

1413 Ptr<NetDevice> dev = m_ipv4->GetNetDevice (m_ipv4->GetInterfaceForAddress (receiver));

1414 RoutingTableEntry newEntry (dev, src, false, rreqHeader.GetOriginSeqno (),

1415 m_ipv4->GetAddress (m_ipv4->GetInterfaceForAddress (receiver), 0),

1416 1, src, m_activeRouteTimeout, 0, 0);

1417 m_routingTable.AddRoute (newEntry) ;

1418 ¥

1419 else

1420 {

1421 toNeighbor.SetLifeTime (m_activeRouteTimeout);

1422 toNeighbor.SetValidSeqNo (false);

1423 toNeighbor.SetSeqNo (rreqHeader.GetOriginSegno ());

1424 toNeighbor.SetFlag (VALID);

1425 toNeighbor.SetOutputDevice (m_ipv4->GetNetDevice (m_ipv4->GetInterfaceForAddress (receiver)));

1426 toNeighbor.SetInterface (m_ipv4->GetAddress (m_ipv4->GetInterfaceForAddress (receiver), 0));

1427 toNeighbor.SetHop (1);

1428 toNeighbor.SetNextHop (src);

1429 m_routingTable.Update (toNeighbor) ;

1430 }

1431 m_nb.Update (src, Time (m_allowedHelloLoss * m_helloInterval));

1432

1433 NS_LOG_LOGIC (receiver << " receive RREQ with hop count," << static_cast<uint32_t> (rreqHeader.GetHopCount
—)

1434 << ",ID." << rreqHeader.GetId ()

1435 << " to destination, " << rreqHeader.GetDst ());

1436

1437 // A node generates a RREP if either:

1438 // (i) it is itself the destination,

1439 if (IsMyOwnAddress (rreqHeader.GetDst ()))

1440 {

1441 m_routingTable.LookupRoute (origin, toOrigin);

1442 NS_LOG_DEBUG ("Send, reply,since I, am the destination");

1443 SendReply (rreqHeader, toOrigin);

1444 return;

1445 }

1446 /*

1447 * (ii) or it has an active route to the destination, the destination sequence number in the node’s
<~ existing route table entry for the destination

1448 * is valid and greater than or equal to the Destination Sequence Number of the RREQ, and the "destination
— only" flag is NOT set.

1449 */

1450 RoutingTableEntry toDst;
1451 Ipv4Address dst = rreqHeader.GetDst ();
1452 if (m_routingTable.LookupRoute (dst, toDst))

1453 {

1454 /*

1455 * Drop RREQ, This node RREP will make a loop.
1456 */

1457 if (toDst.GetNextHop () == src)

117

1458 {

1459 NS_LOG_DEBUG ("Drop RREQ, from " << src << ", dest mext hop " << toDst.GetNextHop ());

1460 return;

1461 }

1462 /*

1463 * The Destination Sequence number for the requested destination is set to the maximum of the
< corresponding value

1464 * received in the RREQ message, and the destination sequence value currently maintained by the node for
<> the requested destination.

1465 * However, the forwarding node MUST NOT modify its maintained value for the destination sequence
< number, even if the value

1466 * received in the incoming RREQ is larger than the value currently maintained by the forwarding node.

1467 */

1468 if ((rreqHeader.GetUnknownSeqno () || (int32_t (toDst.GetSeqNo ()) - int32_t (rregHeader.GetDstSeqno ())
— >= 0))

1469 &% toDst.GetValidSeqNo ())

1470 {

1471 if (!rreqHeader.GetDestinationOnly () && toDst.GetFlag () == VALID)

1472 {

1473 m_routingTable.LookupRoute (origin, toOrigin);

1474 SendReplyByIntermediateNode (toDst, toOrigin, rreqHeader.GetGratuitousRrep ());

1475 return;

1476 ¥

1477 rreqHeader.SetDstSeqno (toDst.GetSeqNo ());

1478 rreqHeader.SetUnknownSegno (false);

1479 }

1480 }

1481

1482 SocketIpTtlTag tag;

1483 p->RemovePacketTag (tag);

1484 if (tag.GetTtl () < 2)

1485 {

1486 NS_LOG_DEBUG ("TTL_exceeded. Drop RREQ origin " << src << " _destination," << dst);

1487 return;

1488 }

1489

1490 for (std::map<Ptr<Socket>, Ipv4InterfaceAddress>::const_iterator j =

1491 m_socketAddresses.begin (); j !'= m_socketAddresses.end (); ++j)

1492 {

1493 Ptr<Socket> socket = j->first;

1494 Ipv4InterfaceAddress iface = j->second;

1495 Ptr<Packet> packet = Create<Packet> ();

1496 SocketIpTtlTag ttl;

1497 ttl.SetTtl (tag.GetTtl () - 1);

1498 packet->AddPacketTag (ttl);

1499 packet->AddHeader (rreqHeader);

1500 TypeHeader tHeader (EA_AODVTYPE_RREQ);

1501 packet->AddHeader (tHeader);

1502 // Send to all-hosts broadcast if on /32 addr, subnet-directed otherwise

1503 Ipv4Address destination;

1504 if (iface.GetMask () == Ipv4Mask::GetOnes ())

1505 {

1506 destination = Ipv4Address ("255.255.255.255");

1507

1508 else

1509 {

1510 destination = iface.GetBroadcast ();

1511 }

1512 m_lastBcastTime = Simulator::Now ();

1513 Simulator::Sc