
Cover

Federal Agency and Organization Element to Which Report is Submitted:

4900

Federal Grant or Other Identifying Number Assigned by Agency:

1816197

Project Title:

NeTS: Small: RUI: Bulldog Mote- Low Power Sensor Node and design Methodologies

for Wireless Sensor Networks

PD/PI Name:

· Nan Wang, Principal Investigator

· Woonki Na, Co-Principal Investigator

Recipient Organization:

California State University-Fresno Foundation

Project/Grant Period:

10/01/2018 - 09/30/2021

Reporting Period:

10/01/2019 - 09/30/2020

Prepared by: Calvin Jarrod Smith

National Science Foundation

Bulldog Mote Project

Progress as of September 28, 2020

Calvin Jarrod Smith

Department of Electrical and Computer Engineering

California State University, Fresno

NSF Bulldog Mote Team

Contents

1 Purpose 3

2 Current Projects 3

2.1 TelosB Prototype Gateway Design . 3

2.1.1 Overview . 3

2.1.2 TelosB Network . 5

2.1.3 STM32 Master Controller . 6

2.1.4 ESP32 Wi-Fi Sub-System . 11

2.1.5 Raspberry Pi and TelosB Receiver . 13

2.1.6 Results . 14

2.2 PCB Design of CC2630 Embedded System 15

2.2.1 Chip Selection . 16

2.2.2 Basic Components and Circuit Design 16

2.2.3 Antenna Circuit . 17

2.2.4 Decoupling Capacitors . 19

2.2.5 PCB Design Software . 19

2.2.6 Results . 20

3 Next Steps of Project 21

4 Project Code Files 22

4.1 TelosB Client Code . 22

4.2 STM32 Main Controller Code . 24

4.3 ESP32 Sub-System Code . 35

4.4 TelosB Server Code . 38

1

List of Figures

1 TelosB Gateway Prototype Diagram. 4

2 TelosB Gateway Prototype. 5

3 TelosB Wireless Sensor Mote. 6

4 STM32 L432KC Development Board. 7

5 STM32CubeMX Software User Interface. 8

6 STM32CubeMX Project Settings. 9

7 Keil µVision IDE. 9

8 STM32 Controller LCD Indicator for Network Status. 11

9 ESP32 Node-MCUDevice used for Wi-Fi Communication in Gateway Prototype. 11

10 The TelosB Server and Raspberry Pi Sub-System. 13

11 List of Feeds from Devices in Network. 14

12 Graphical Feed of Mote with Address CD6ED. 14

13 PCB Prototype of the CC2630 Embedded System. 15

14 Circuit Design of PCB Prototype System. 17

15 MIFA Antenna, IFA Antenna, Folded-Dipole Antenna and YAGI Antenna

PCB Designs. 18

16 PCB IFA, Balun and LC Filter connected to MCU. 19

17 Front and Back of PCB Prototype Design. 20

18 TelosB and CC2630 PCB Prototype System Size Comparison. 20

2

1 Purpose

The National Science Foundation (NSF) Bulldog Mote Team is part of California State
University, Fresno Department of Electrical and Computer Engineering. The purpose of this
group is to discover, research and develop wireless communication protocols and hardware
used in Mobile Ad-Hoc Networks (MANETs) and Wireless Sensor Networks (WSNs). This
team’s purpose is to research current wireless technologies and algorithms and create new
hardware implementations to support current and future protocols for both MANETs and
WSNs.

To accomplish this goal, the team has researched new a developing wireless schemes,
hardware to support the processing of data within these wireless networks and various routing
algorithms used to direct data through MANETs and sensor networks.

2 Current Projects

2.1 TelosB Prototype Gateway Design

The TelosB wireless sensor nodes are equipped with a Texas Instruments CC2420 wireless
transceiver. This ZigBee and 6LoWPAN-ready chip is compliant with the IEEE 802.15.4
standard for low-rate, personal wireless area networks. This allows the TelosB motes to be
able to form a wireless network mesh topology in which collected sensor data can be sent
through collection of motes to some predetermined destination for data collection. However,
these devices are not equipped for internet connectivity. Their lack of Ethernet and Wi-Fi
capabilities keep them isolated from other internet-connected devices. To remedy this, a
WSN gateway has be developed to bridge the two types of networks, allowing the collected
data to be published to the internet for some further purpose such as data forecasting,
visualization, monitoring or surveillance, among other applications.

2.1.1 Overview

The TelosB Prototype Gateway system consists of several sub-systems that allow the handling
of both 6LoWPAN and Wi-Fi communication.

3

Figure 1: TelosB Gateway Prototype Diagram.

This design consists of an STM32 L432KC device used as a master controller, an ESP32
Node-MCU used as a Wi-Fi transceiver, an LCD screen for network status indication, and a
TelosB/Raspberry Pi sub-system used for 6LoWPAN interconnection for the TelosB network.
The working prototype is shown in Figure 2.

4

Figure 2: TelosB Gateway Prototype.

2.1.2 TelosB Network

The TelosB mote is a wireless sensor device equipped with temperature, light, infrared and
humidity sensors. This device is compatible with TinyOS and ContikiOS operating systems
(OS) and is capable of using both ZigBee and 6LoWPAN wireless transmission protocols.

5

Figure 3: TelosB Wireless Sensor Mote.

Six of these motes were used to perform temperature data collection. This collection of

motes was placed in a distributed fashion around the laboratory to purposely form a mesh

topology where multiple hops would be necessary for distance motes to transmit sensed data

to the gateway device. Each device was programmed using the Contiki NG OS as a UDP

client that performed a temperature reading, then used RPL routing to send the temperature

data to the UDP server, which was programmed to be the TelosB device connected to the

gateway.

The program running on each mote is shown in Section 4.1. Each mote is configured to

read its temperature sensor and battery level every 20±2 seconds. This slight jitter is added

to the timer to avoid consistent transmission collisions in case two or more nodes happen to

transmit periodically at the same time. Also, to make transmissions easier to identify, the

green on-board LED was momentarily flashed every time a UDP packet was created and

sent from an originating node.

2.1.3 STM32 Master Controller

The device chosen for the main system controller was an STM32 Low-power Cortex-M4

microcontroller. The L432KC model was decided upon for its small form factor, low cost

and functionality. The hardware can be programmed to support up to 2 UART and 1 I2C

communication ports at the same time, so this chip was an ideal choice.

6

Figure 4: STM32 L432KC Development Board.

In addition, the controller needed a real-time operating system to handle multiple tasks
and interrupt events, so the chip needed to have enough memory in terms of program size
(ROM or Flah) and stack and data memory (RAM). The STM32 L432KC contains 256 KB
of Flash memory for programs and 64 KB of RAM for program memory, which is sufficient
for running a small real-time operating system like FreeRTOS.

FreeRTOS was chosen as the OS used in the main controller system because of extensive
community support, small program size, and the ability to handle interrupts while running
non-preempting (or cooperative) multiple tasks. The latter allows tasks to run to completion
without the risk of interrupt each other, but allows external events to be handled, like UART
packets, through hardware interrupts.

The first step to begin programming the STM32 development board with FreeRTOS, was
to setup the hardware devices necessary to communicate with all sub-systems. For this, 2
UART ports were needed for communication with the TelosB network though the Rasperry
Pi/TelosB Server mote and another for the ESP32 to connect to the internet and upload
temperature readings to a database. In addition, an I2C port was needed for the LCD
screen for network status indication. To set up the hardware and create all of the necessary
peripherals and middleware, STM32CubeMX software from STMicroelectronics was used.

7

Figure 5: STM32CubeMX Software User Interface.

The STM32Cube software creates a base project that sets up the chip hardware to the
specifications selected in the user interface. For this project, the STM32L432KC board was
chosen by selecting File→New Project..., clicking the Board Selector tab and typing the
board number under the Part Number Search. The board was chosen out of the Board list

on the bottom of the screen and Start Project was chosen. Then, the USART1 and USART2
were selected setting mode to Asynchronous under the Connectivity drop menu on the left of
the screen. For both of these options, the UART interrupts were enabled by selecting NVIC

Setting in the Configuration window and checking the Enabled check box. As well, the I2C
option was selected and the default setting were used without interrupts, as this system is
only sending data to the LCD via I2C and doesn’t expect any data from the LCD device for
interrupt handling to be necessary.

To enable control of the on-board LED, pin PB3 was clicked on in the Pinout View

window. Then the GPIO Output option was selected. This will allow control of the gree
LED connected to pin PB3 on the board.

Finally, under Middleware, the FREERTOS option was chosen. In the Mode windows,
CMSIS V1 was chosen as the FreeRTOS version. Then under Config Parameters in the
Configuration box, the USE PREEMPTION was disabled. This option makes running tasks
cooperative as opposed to preemptive. The remaining options were left as default. These
options are used to set up a working project for Keil µVision.

Next, the project was saved by clicking on the Project Manager tab and selecting a
project name of STM32 OS System and choosing a directory to save all of the working files.
The Toolchain/IDE chosen was MDK-ARM with version 5, to use Keil µVision 5. Then
GENERATE CODE was clicked on the top right of the interface.

8

Figure 6: STM32CubeMX Project Settings.

The project was then ready to begin software development. To open working project

code, the directory MDK-ARM inside the project folder was accessed and the .uvprojx file

was selected to open the generated µVision project.

Figure 7: Keil µVision IDE.

The generated code contains one default task, so other tasks have to be created. As well,

the default heap size needs to be increased for dynamically allocated data within each task.

This was done by opening the file startup stm32l432xx.s and scrolling to line 43. There

the Heap Size declaration was changed to 0x10000, which changes the heap size to 65 KB.

This size gave enough space for all of the tasks needed for the gateway system.

Next, the main program file was opened and code was written for the main controller of

the gateway system. The complete code is shown in Section 4.2.

9

To handle UART transmissions and a network status display, new structures for packet
buffers, mote addresses, and active network motes were created. As well, transmit and
receive UART buffers were instantiated as 8-bit character buffers to hold the UART packets
for both the TelosB mote receiver and the ESP32 systems. The LCD screen drivers were
also installed in included with the project files.

Two new tasks were created in addition to the default task: UpdateMotes() and LCDTask(),
plus handlers for each task. Within the main() function, the packet buffer, and mote list were
initialized, as well as the hardware peripherals. The ESP32 is initialized by sending WiFi and
server connection requests to the ESP32 device over UART2, which is retransmitted until the
ESP32 acknowledges those requests. Also, the LCD screen is initialized with configuration
data to properly display the network status. The main function also initializes the task
handlers and starts the OS kernel. After that, the default task begins execution.

Within the default task, the system sets up the UART1 connected to the Raspberry
Pi/TelosB server to trigger an interrupt for the next incoming UART transmission. The task
then stays in an infinite loop waiting for incoming packets, which is determined by checking if
the size of the packet buffer is greater than 0. If a packet is present, a critical section is entered
to ensure mutual exclusion of the packet buffer structure, as the UART1 interrupt handler
also modifies the structure. A packet is popped off and its address, temperature reading and
battery reading are extracted. If the address is not present is the list of currently active motes,
it stores the new address and sets if active value to MOTE ACTIVE, which is a constant that is
decayed over time to determine which nodes may have died or become disconnected from the
network. If the battery value is lower than the threshold set by MOTE BATTERY THRES, this
mote is marked as having a low battery and the variable MOTE BATT LOW is set to one. The
address of the device is also saved so that the LCDTask() can indicate this mote as having a
low battery. Once the LCD variables are updated, the data can then be sent to the ESP32
device to be uploaded to the Adafruit IO database. Various commands are used to tell the
ESP32 system what operations to perform and are shown in Table 1. The STM32 device
sends a data request command byte of 5, then sends the posting data of 11 bytes containing
the mote address and temperature reading, and finally sends a data request completion byte
of 0xF. The controller continuously resend this sequence until it receives a data request
acknowledgement byte from the ESP32 system of 7. Once it completes the packet handling,
the task is manually yielded to allow other tasks to run.

Within the UpdateMotes() task, the number of active motes is modified for the LCD
indicator based on the current active value held in the active mote list. This function works
to decay every active mote value by 1 every 10 seconds. Once the value reaches 0, the mote
is marked as inactive and the mote count displayed on the LCD will decrease. In addition
the LCDTask() is run periodically to update the network status on the LCD screen. The
display is shown in Figure ?? with the network status values.

10

Figure 8: STM32 Controller LCD Indicator for Network Status.

The last custom written function in the main program file is the UART receive callback:

HAL UART RxCpltCallback(). This function is triggered when a UART module completes a

reception of a certain number of bytes of data into a receive buffer. In this case, it is triggered

when 17 bytes of the receive buffer are filled, which is the size of the expected packet from

the TelosB server mote. This function takes the received packet in the Rx buff1 and copies

it into a space in the packet buffer as long as there is room. It then increments the size, head

pointer and current packet count used for the LCD. Finally, the function triggers another

UART1 reception via interrupt so that the next packet can be collected and the callback

triggered again.

The remainder of the code in main.cc was the generated code from the STM32CubeMX

software that sets up the hardware peripherals and includes the correct library components

to link the entire project during compilation.

2.1.4 ESP32 Wi-Fi Sub-System

Figure 9: ESP32 Node-MCU Device used for Wi-Fi Communication in Gateway Prototype.

The ESP32 device was used to take UART commands from the STM32 controller and publish

received data to an Adafruit IO database for displaying the data graphically. To do this, the

11

Code (Hex) UART Command

0x1 Request connection to Wi-Fi

0x2 Acknowledge Wi-Fi connection

0x3 Request connection to Adafruit IO Server

0x4 Acknowledge Server connection

0x5 Begin Data Transmission

0x6 End Data Transmission

0x7 Data Transmission Acknowledgement

0xF Transmit Error

Table 1: ESP32 and STM32 UART Command and Acknowledgment Codes

UART2 port of the STM32 device was connected to the UART2 of the ESP32.

The list of commands used between the STM32 and ESP32 devices are shown in Table 1

The ESP32 development board was programmed using the Arduino IDE because of the

simple Wi-Fi and Adafruit IO libraries that are already implemented for the system. Since

this part of the project deals mostly with hardware, the software on the systems matters

less.

Within the program running on the ESP32, a new class was developed to handle all of the

feeds and motes listed to Adafruit IO. First, each encountered mote was given its own feed

so that data from each mote could be isolated in the database. Then functions for inserting

and checking mote addresses into the AIO Feed Class and functions to send data to the

mote’s particular feed in the database were written along with the default class constructor

and destructor.

In the Arduino setup() function, the serial ports were opened for the serial console

display and the serial UART connection to the STM32 using 115200 as the baud rate.

Then a connection was established to the Adafruit IO database using io.connect(). This

establishes both the Wi-Fi connection and database connection. Then, in the loop()

function, UART commands are read into the ESP32 system. Each command is broken

in to determine what the requested operation is. The command code is saved into the oper

variable which is then compared to available operations. A command of 1 tells the ESP32

system to check Wi-Fi connectivity and confirm by transmitting back a command code of

2. Command code 3 requests a connection to the Adafruit IO server, which the ESP32 will

reply with a 4 code for acknowledgement. When the system receives a 5, it will wait for a

brief period to allow the requested data to be transmitted into the UART hardware buffer

completely. This data will then be copied into the software variable inData, which the lower

5-bytes of the IPv6 address and the temperature data are extracted separately and inserted

into the feed class using the sendData() method. This method then checks if the address is

current part of the list of known nodes, add it to the list and creates its own feed if its not

and then publishes the requested data to that feed. Once this data transmission is complete,

the ESP32 then transmits a 7 back to the STM32 controller to indicate the data publication

was successful. The full working code for the ESP32 system is shown in Section 4.3.

12

2.1.5 Raspberry Pi and TelosB Receiver

This part of the gateway system was used to collect temperature and battery data from

the motes in the TelosB mesh network. The TelosB device acting as the UDP server was

connected to the Raspberry Pi through USB. This configuration was necessary as there is only

two serial communication ports already designated for the CC2420 Radio Transceiver and

UART via USB port. As there were no other ports available to route to the TelosB’s GPIO

pins, the USB had to be used. The Raspberry Pi was selected as the USB-to-UART translator

because it has the hardware USB input ports, an OS with all the necessary firmware and

drivers for the USB ports and accessible UART GPIO pins to connect to the STM32 device.

Figure 10: The TelosB Server and Raspberry Pi Sub-System.

The TelosB device was programmed using Contiki NG as a UDP server to collect the

data being transmitted in the TelosB network. In the receive callback function of the server,

the device prints the packet data and originating address of the client device to the USB.

This acts as a UART communication over the USB to the Raspberry Pi. The code for the

server program is shown in Section 4.4.

On the Raspberry Pi, the kernel control of the serial communication pins had to be

disabled so that a user program could use the UART pins. This was done using the

raspi-config command in Rasbian OS. once disabled the system was rebooted and a bash

script was written to take incoming USB serial data and send over the UART GPIO pins

located at /dev/ttyAMA0:

#!/usr/bin/env bash

stty 115200 sane -echo < /dev/ttyUSB0

while (true); do cat /dev/ttyUSB0; done > /dev/ttyAMA0

This script sets the baud rate for the transmissions to 115200 and repeatedly checks the

serial input of the USB at /dev/ttyUSB0 for any data. Every received byte of data from the

USB is sent over the

13

2.1.6 Results

When all the sub-systems are wired together correctly and executed, the TelosB network

data is successfully uploaded to the Adafruit IO database and graphical data is shown for

the six different motes in the network.

Figure 11: List of Feeds from Devices in Network.

Figure 11 shows the six active motes that are running in the network. Each mote collects

and transmits temperature and battery readings every 20 seconds, so this network transmits

18 unique pieces of data every minute.

Figure 12: Graphical Feed of Mote with Address CD6ED.

Mote CD6ED shows a graphical representation of data in Figure 12.

14

2.2 PCB Design of CC2630 Embedded System

Once the gateway prototype for the TelosB network was complete, the natural next step was

to begin the design of a PCB system in which to migrate the development of a new gateway

onto. This new PCB design will help with the development of both a new TelosB gateway

device and a new wireless sensor mote.

Figure 13: PCB Prototype of the CC2630 Embedded System.

This new development board contains few components, including a Texas Instruments

CC2630Wireless MCU, JTAG header, GPIO, push buttons and a green LED.When designing

this new PCB prototype, there were several objectives:

1. The design needed to be as small as possible.

2. The components should consume as little power as possible.

3. The design needed to be as low-cost as possible.

4. The design needed to be very simple, so that testing and debugging could be done

more easily.

15

5. The design needed to be battery operated so it could act like a wireless sensor node.

6. The system needed to have wireless capabilities and be able to communicate with a
6LoWPAN, IEEE 802.15.4 standard wireless network.

To be able to meet these objectives several design components needed to be considered:
chip selection, basic components and circuit design, antenna circuit and decoupling capacitors.

2.2.1 Chip Selection

The Texas Instruments CC2630 chip was chosen out of a several other considerations.
This chip is an all-in-one wireless microcontroller with ZigBee and 6LoWPAN capabilities.
Having a single chip on-board saves space when compared to the TelosB mote where the
MSP430 microcontroller and CC2420 Radio transceiver are separated and require many
passive components [1].

Other all-in-one wireless microcontroller units (MCUs) were also considered like the Texas
Instruments CC2538 and CC2650. These two and the CC2630 chip are all supported by
Contiki OS, are 6LoWPAN-ready, are very low-power. Out of these three the CC2630 is
the lowest cost while also consuming the least power [2] [3] [4]. The RHB IC package of the
CC2630 was also chosen due to its incredibly compact size (5 mm × 5 mm) while still having
32 pins.

2.2.2 Basic Components and Circuit Design

Texas Instruments has published several Application Reports that help embedded designers
create effective systems using their ICs. The report CC13xx/CC26xx Hardware Configuration
and PCB Design Considerations [5] was used to aid in the design of the PCB design in this
project. In addition, several reference design were used to determine correct component
placement and system circuit design such as the TI SensorTag [6], the TI Humidity and
Temperature Sensor Node [7], and the CC2538EM system [8].

The reference design stated above were used to create the system circuit design shown in
Figure 15.

16

Pin 28 Pin 11 Pin 18

Pin 29 Pin 17Pin 32

A1

B
A
T
T
1

C11

15pF
C12

15pF

C10

1pF

C
1
6

1
p
F

C
1
5

0
.5
p
F

C
1
4

1
p
F

C
1
7

D
N
M

C
1
8

D
N
M

C
2
0

1
2
p
F

C
2
1

1
2
p
F

C
1

1
0
0
u
F

C
2

D
N
M

J2

C
3

0
.1
u
F

C
4

0
.1
u
F

C
5

1
0
u
F

C
6

0
.1
u
F

C
9

1
0
u
F

C
8

0
.1
u
F

C
7

0
.1
u
F

CLK1

24MHz

CLK2

32.768kHz

D1
EMI1

GND J1

L
2

2
.4
n
H

L5

2.4nH

L3

2nH

L4

2nH

L1

10uH

VDDS

VDDR

VDDR VDDS

R2

0Ω

R1

12.1

U1

VDDS

C
1
9

1
.0
u
F

ESD1

ESD4

J3

VDDS

S
2

S
1

C
2
3

2
2
0
0
p
F

C
2
2

2
2
0
0
p
F

R
4

4
7
.5
k
Ω

R
3

4
7
.5
k
Ω

ESD3ESD2

VDDS VDDS

L
E
D
1

R
5

6
8
0
Ω

VDDS

C
1
3

D
N
M

Figure 14: Circuit Design of PCB Prototype System.

Several basic components in this PCB design are necessary for correct functionality of
the system. First, two crystal clocks are needed. A 24 MHz crystal is required for the radio
transceiver as a frequency reference, and the 32.768 kHz crystal is used to improve sleep
clock accuracy as opposed to using the internal RC oscillator. Next, decoupling capacitors
are used to decouple several voltage inputs from the battery via VDDS and VDDR. To program
the chip, a 10-pin JTAG port was used to connect to the chip’s JTAG TMSC and JTAG TCKC

lines. These input also included electro-static discharging diodes to help reduce any noise
on the input lines. To allow other serialized devices to interact with the development board,
GPIO pins were included as well. Also, for indication and user interaction, a green LED and
two push buttons were included in the design.

2.2.3 Antenna Circuit

The antenna circuit is a critical component of a wireless design, not just for its application,
but also for its complexity level of difficulty in designing a custom one. There are four typical
PCB antenna designs for 2.4 GHz applications: a Meandering Inverted-F Antenna (MIFA),
an Inverted-F Antenna (IFA), a Folded Dipole Antenna, and a YAGI Antenna.

17

Figure 15: MIFA Antenna, IFA Antenna, Folded-Dipole Antenna and YAGI Antenna PCB

Designs.

Out of all of these designs the IFA and MIFA designs are the smallest and work best for

a compact PCB design. Of these two however, the IFA design has a more omni-directional

radiation pattern than the MIFA, so for this project the IFA was the antenna of choice.

To balance the RF signal being received on the antenna, a Balun is used as part of

the antenna circuit. The layout of a Balun needs to be as symmetrical as possible. This

circuit plus the LC filter connected between the microcontroller and the Balun to attenuate

signal harmonics and to function as an impedance transformation for 50 Ω. This circuit is

also tuned using specialized, expensive equipment and for this reason most manufacturers

recommend copying the antenna circuit from one of their reference design. In the case of

this project, the Texas Instruments SensorTag antenna circuit was used as it featured an

IFA and the SensorTag device has a CC2650 MCU, which has an identical pin layout the

the CC2630 in this project. The PCB antenna for this design is shown in Figure 16.

18

Figure 16: PCB IFA, Balun and LC Filter connected to MCU.

2.2.4 Decoupling Capacitors

The decoupling capacitors are necessary in the design to act as a energy reservoir in case the

system draws a large amount of current from the battery causing a voltage levels to be pulled

down. There are general rules that should be followed when placing decoupling capacitors.

First, they should be placed on the same side of the PCB as the active component, in this

case the CC2630 chip. Each capacitor should also have its own via to ground to reduce noise

coupling. Current return paths should be short, generally using a large ground pad on the

back of the PCB. Decoupling capacitors should also be as close as possible to the pin they

are supposed to decouple. These considerations will help with reducing jittery power lines

and voltage drop during times of high current demand.

In this design, decoupling capacitors were placed very close to the IC, each with their

own via to ground on the back of the PCB, which acted as a large ground pad for the entire

board.

2.2.5 PCB Design Software

DipTrace was the design software used to create the PCB layout. The models for each

components were either obtained from the manufacturer website or created based on the

footprints given in the device’s datasheet. The completed PCB designs are shown in Figures

?? and ??

19

Figure 17: Front and Back of PCB Prototype Design.

2.2.6 Results

The resulting PCB system was successfully design, fabricated and components soldered in

place. The complete PCB implementation is shown in Figure 13. A size comparison between

the TelosB and the new CC2630 PCB prototype board are shown in Figure 18.

Figure 18: TelosB and CC2630 PCB Prototype System Size Comparison.

20

3 Next Steps of Project

The next steps in for the NeTs Bulldog Mote project are threefold. After through testing of

the PCB prototype design, a new wireless sensor mote will be design using the PCB design

in this report as a starting point. As well, a PCB design for a new gateway device will

be developed using the designs in both projects in this report. Finally, software routing

algorithms to make traditional routing more energy-efficient are currently being developed.

21

4 Project Code Files

4.1 TelosB Client Code

#inc lude ” c on t i k i . h”
#inc lude ”net / rout ing / rout ing . h”
#inc lude ”random . h”
#inc lude ”net / net s tack . h”
#inc lude ”net / ipv6 / simple−udp . h”
#inc lude ”dev/ sht11 / sht11−s enso r . h”
#inc lude ”dev/ battery−s enso r . h”
#inc lude <msp430 . h>

#inc lude ” sys / log . h”
#de f i n e LOGMODULE ”App”
#de f i n e LOG LEVEL LOG LEVEL INFO

#de f i n e WITH SERVER REPLY 1
#de f i n e UDP CLIENT PORT 8765
#de f i n e UDP SERVER PORT 5678

#de f i n e SEND INTERVAL (10 ✯ CLOCK SECOND)

s t a t i c s t r u c t s imple udp connect ion udp conn ;
/✯−−−✯/
PROCESS(udp c l i e n t p r o c e s s , ”UDP c l i e n t ”) ;
AUTOSTART PROCESSES(&udp c l i e n t p r o c e s s) ;
/✯−−−✯/

s t a t i c void
udp rx ca l l back (s t r u c t s imple udp connect ion ✯c ,

const u i p i padd r t ✯ sender addr ,
u i n t 16 t sender por t ,
const u i p i padd r t ✯ r e c e i v e r add r ,
u i n t 16 t r e c e i v e r p o r t ,
const u i n t 8 t ✯data ,
u i n t 16 t data len)

{

LOG INFO(” Received response ’%.✯ s ’ from ” , datalen , (char ✯) data) ;
LOG INFO 6ADDR(sender addr) ;

#i f LLSEC802154 CONF ENABLED
LOG INFO (” LLSEC LV:%d” , u i p bu f g e t a t t r (UIPBUF ATTR LLSEC LEVEL)) ;

#end i f
LOG INFO (”\n ”) ;

}
/✯−−−✯/
PROCESS THREAD(udp c l i e n t p r o c e s s , ev , data)
{

s t a t i c s t r u c t et imer p e r i o d i c t ime r ;
s t a t i c unsigned count ;
s t a t i c char s t r [3 2] ;
u i p i padd r t de s t i paddr ;

s t a t i c i n t temp ;
s t a t i c i n t vo l t ;

// P5DIR |= (0X16 | 0x32 | 0x64) ; // Al l th ree LEDs
P5DIR |= 0x32 ;
PROCESS BEGIN() ;

/✯ I n i t i a l i z e UDP connect ion ✯/
s imp l e udp r e g i s t e r (&udp conn , UDP CLIENT PORT, NULL,

UDP SERVER PORT, udp rx ca l l back) ;

22

e t ime r s e t (&pe r i od i c t ime r , random rand () % SEND INTERVAL) ;
whi l e (1) {

SENSORS ACTIVATE(sh t11 s en so r) ;
SENSORS ACTIVATE(ba t t e r y s en s o r) ;

PROCESS WAIT EVENT UNTIL(e t ime r exp i r ed (&pe r i o d i c t ime r)) ;

//P5OUE
P5OUT &= ˜(1<<5); // bit−c l e a r LED3 to s ink cur rent

// l ed s on (LEDS ALL) ;
temp = sh t11 s en so r . va lue (SHT11 SENSOR TEMP) ;
vo l t = ba t t e r y s en s o r . va lue (0) ;
i f (NETSTACKROUTING. node i s r e a chab l e () && NETSTACKROUTING. g e t r o o t i p add r (&des t ipaddr))

/✯ Send to DAG root ✯/
p r i n t f (” Sending reque s t %u to \n” , count) ;
LOG INFO 6ADDR(&des t ipaddr) ;
LOG INFO (”\n ”) ;

s np r i n t f (s t r , s i z e o f (s t r) , ”%d %d” , temp , vo l t) ;
s imple udp sendto (&udp conn , s t r , s t r l e n (s t r) , &de s t i paddr) ;
count++;

} e l s e {
LOG INFO(”Not reachab l e yet \n ”) ;

}

/✯ Add some j i t t e r ✯/
e t ime r s e t (&pe r i od i c t ime r , SEND INTERVAL

− CLOCK SECOND + (random rand () % (2 ✯ CLOCK SECOND))) ;

//P5OUT |= (0X16 | 0x32 | 0x64) ;
P5OUT |= (1<<5);
SENSORS DEACTIVATE(sh t11 s en so r) ;
SENSORS DEACTIVATE(ba t t e r y s en s o r) ;

}

PROCESS END() ;
}
/✯−−−✯/

23

4.2 STM32 Main Controller Code

/✯ USER CODE BEGIN Header ✯/
/✯✯

✯✯

✯ @f i l e : main . c
✯ @br ie f : Main program body
✯✯

✯ @attent ion
✯

✯ <h2><center>© ; Copyright (c) 2020 STMicroe l e c t ron i c s .
✯ Al l r i g h t s r e s e rved .</ center></h2>
✯

✯ This so f tware component i s l i c e n s e d by ST under Ult imate L iber ty l i c e n s e
✯ SLA0044 , the ” L icense ” ; You may not use t h i s f i l e except in compliance with
✯ the L icense . You may obta in a copy o f the L icense at :
✯ www. s t . com/SLA0044
✯

✯✯

✯/
/✯ USER CODE END Header ✯/

/✯ Inc lude s −−✯/
#inc lude ”main . h”
#inc lude ” cms i s o s . h”

/✯ Pr ivate i n c l ud e s −−✯/
/✯ USER CODE BEGIN Inc lude s ✯/
#inc lude <s t d l i b . h>
#inc lude <s t r i n g . h>
#inc lude <s t d i o . h>
#inc lude ” s sd1306 f on t s . h”
#inc lude ” s s d 1 306 t e s t s . h”
#inc lude ” ssd1306 . h”
#inc lude ” ctype . h”
/✯ USER CODE END Inc lude s ✯/

/✯ Pr ivate typede f −−−✯/
/✯ USER CODE BEGIN PTD ✯/

/✯ USER CODE END PTD ✯/

/✯ Pr ivate d e f i n e −−✯/
/✯ USER CODE BEGIN PD ✯/
#de f i n e MOTE PKT SIZE 17
#de f i n e MAXMOTES 64
#de f i n e PKT BUFFMAX 8
#de f i n e LCD ROW 1 1
#de f i n e LCD ROW 2 17
#de f i n e LCD ROW 3 33
#de f i n e LCD ROW 4 49
#de f i n e MOTEBATTERYTHRES 3000
#de f i n e MOTE ACTIVE 3
/✯ batte ry th r e sho ld determined by ADC value

Minimum batte ry vo l tage to operate i s 2 . 1V
Measured Voltage = (ADCval/4096)✯Vref ✯2
Vref o f 2 . 4 used as worst case , so the ADCval
that would r ep r s en t 2 .1V i s 1792 , round up to get
1800 which g i v e s some timee be f o r e mote w i l l d i e

✯/
/✯ USER CODE END PD ✯/

/✯ Pr ivate macro −−−✯/
/✯ USER CODE BEGIN PM ✯/
s t r u c t MOTEPKT {

char pkt [MOTE PKT SIZE] ;
} ;

24

/✯ USER CODE END PM ✯/

/✯ Pr ivate v a r i a b l e s −−−✯/
I2C HandleTypeDef h i2c1 ;

UART HandleTypeDef huart1 ;
UART HandleTypeDef huart2 ;

osThreadId defaultTaskHandle ;
/✯ USER CODE BEGIN PV ✯/

osThreadId UpdateMotesHandle ;
osThreadId LCDTaskHandle ;

// bu f f e r o f r e c e i v ed packets
s t r u c t PKT BUFF {

unsigned i n t head ;
unsigned i n t t a i l ;
unsigned i n t s i z e ;
s t r u c t MOTEPKT bu f f [PKT BUFFMAX] ;

}PKT BUFF;

s t r u c t MOTEADDR {
char addr [5] ;

} MOTEADDR;

s t r u c t NETWORKMOTES {
s t r u c t MOTEADDR moteAddr [MAXMOTES] ;
i n t a c t i v e [MAXMOTES] ;
i n t s i z e ;

} NETWORKMOTES;

// UART bu f f e r s
// modi f i ed by UART1 and UART2 RX ca l l b a ck s
// and PacketHandler f o r the Tx buff
char Rx buff1 [MOTE PKT SIZE] ;
u i n t 8 t Rx buff2 [8] ;
char Tx buff [1 1] ;

// packet bu f f e r
// modi f i ed by UART1 RX ca l l ba ck and PacketHandler
s t r u c t PKT BUFF pktBuff ;

// cur rent motes in network
// modi f i ed by PacketHandler
i n t ACTIVE MOTES = 0 ;
s t r u c t NETWORKMOTES networkMotes ;

// cur rent number o f r e c e i v ed packets
// modi f i ed by UART1 RX Cal lback
i n t CURRENTPKTCOUNT = 0 ;

// cur rent network cond i t i on s from ESP32
// modi f i ed by UART2 RX Cal lback
i n t CONNECTED WIFI = 0 ;
i n t CONNECTEDSERVER = 0 ;

// low batte ry s t a tu s
// modi f i ed by PacketHandler
i n t MOTEBATTERYLOW = 0;
char MOTEBATTERYLOWADDR[5] ;

// LCDTask Globals −−−
char d i sp l ay [2 0] ;
// −−−

/✯ USER CODE END PV ✯/

25

/✯ Pr ivate func t i on prototypes −−−✯/
void SystemClock Config (void) ;
s t a t i c void MX GPIO Init (void) ;
s t a t i c void MX USART1 UART Init(void) ;
s t a t i c void MX USART2 UART Init(void) ;
s t a t i c void MX I2C1 Init (void) ;

// STM32 Gateway Tasks
void StartDefaul tTask (void const ✯ argument) ;
void UpdateMotes (void const ✯ argument) ;
void LCDTask(void const ✯ argument) ;

i n t stringCmp (char ✯ a , char ✯ b , s i z e t s i z e) ;
i n t int2Str ingCpy (char ✯✯ dest , i n t src , s i z e t s i z e) ;
i n t str ingCpy (char ✯✯ dest , char ✯ src , s i z e t s i z e) ;
void ESP32 Init (void) ;

/✯ USER CODE BEGIN PFP ✯/

/✯ USER CODE END PFP ✯/

/✯ Pr ivate user code −−−✯/
/✯ USER CODE BEGIN 0 ✯/

/✯ USER CODE END 0 ✯/

/✯✯
✯ @br ie f The app l i c a t i o n entry po int .
✯ @retval i n t
✯/

i n t main (void)
{

/✯ USER CODE BEGIN 1 ✯/
pktBuff . head = 0 ;
pktBuff . t a i l = 0 ;
pktBuff . s i z e = 0 ;

// i n i t i a l i z e a l l p l a c e s in network motes to 0
f o r (i n t i = 0 ; i < MAXMOTES; i++) {

s t rncpy (networkMotes . moteAddr [i] . addr , ”00000” ,5) ;
networkMotes . a c t i v e [i] = 0 ;

}
/✯ USER CODE END 1 ✯/

/✯ MCU Conf igurat ion−−✯/

/✯ Reset o f a l l p e r i phe ra l s , I n i t i a l i z e s the Flash i n t e r f a c e and the Sys t i ck . ✯/
HAL Init () ;

/✯ USER CODE BEGIN I n i t ✯/
//HAL UART Receive IT(&huart2 , (u i n t 8 t ✯) Rx buff2 , 6) ;

/✯ USER CODE END In i t ✯/

/✯ Conf igure the system c lock ✯/
SystemClock Config () ;

/✯ USER CODE BEGIN Sys In i t ✯/

/✯ USER CODE END Sys In i t ✯/

/✯ I n i t i a l i z e a l l c on f i gu r ed p e r i p h e r a l s ✯/
MX GPIO Init () ;
MX USART1 UART Init () ;
MX USART2 UART Init () ;
MX I2C1 Init () ;
/✯ USER CODE BEGIN 2 ✯/

26

s s d 1306 In i t () ;
ESP32 Init () ;
//HAL UART Receive IT(&huart1 , (u i n t 8 t ✯) Rx buff1 ,MOTE PKT SIZE) ;

/✯ USER CODE END 2 ✯/

/✯ USER CODE BEGIN RTOSMUTEX ✯/
/✯ add mutexes , . . . ✯/
/✯ USER CODE END RTOSMUTEX ✯/

/✯ USER CODE BEGIN RTOS SEMAPHORES ✯/
/✯ add semaphores , . . . ✯/
/✯ USER CODE END RTOS SEMAPHORES ✯/

/✯ USER CODE BEGIN RTOS TIMERS ✯/
/✯ s t a r t t imers , add new ones , . . . ✯/
/✯ USER CODE END RTOS TIMERS ✯/

/✯ USER CODE BEGIN RTOS QUEUES ✯/
/✯ add queues , . . . ✯/
/✯ USER CODE END RTOS QUEUES ✯/

/✯ Create the thread (s) ✯/
/✯ d e f i n i t i o n and c r e a t i on o f de fau l tTask ✯/
osThreadDef (defaultTask , StartDefaultTask , osPr ior i tyNormal , 1 , 128) ;
defaultTaskHandle = osThreadCreate (osThread (de fau l tTask) , NULL) ;

/✯ USER CODE BEGIN RTOS THREADS ✯/
/✯ add threads , . . . ✯/

osThreadDef (LCDTask1 , LCDTask , osPrior i tyNormal , 1 , 5 12) ;
LCDTaskHandle = osThreadCreate (osThread (LCDTask1) , NULL) ;

osThreadDef (UpdateMotes1 , UpdateMotes , osPr ior i tyNormal , 1 , 1 2 8) ;
UpdateMotesHandle = osThreadCreate (osThread (UpdateMotes1) ,NULL) ;
// osThreadDef (UpdateMoteActivity1 , UpdateMoteActivity , osPr ior i tyNormal , 1 , 1 2 8) ;
//UpdateMoteActivityHandle = osThreadCreate (osThread (UpdateMoteActivity1) ,NULL) ;
//HAL UART Receive IT(&huart1 , (u i n t 8 t ✯) Rx buff1 ,MOTE PKT SIZE) ;
//HAL UART Receive IT(&huart2 , (u i n t 8 t ✯) Rx buff2 , 6) ;

/✯ USER CODE END RTOS THREADS ✯/

/✯ Star t s chedu l e r ✯/
osKerne lS ta r t () ;

/✯ We should never get here as c on t r o l i s now taken by the s chedu l e r ✯/

/✯ I n f i n i t e loop ✯/
/✯ USER CODE BEGIN WHILE ✯/
whi l e (1)
{

/✯ USER CODE END WHILE ✯/

/✯ USER CODE BEGIN 3 ✯/
}
/✯ USER CODE END 3 ✯/

}

/✯✯
✯ @br ie f System Clock Conf igurat ion
✯ @retval None
✯/

void SystemClock Config (void)
{

RCC OscInitTypeDef RCC OscInitStruct = {0} ;
RCC ClkInitTypeDef RCC ClkInitStruct = {0} ;
RCC PeriphCLKInitTypeDef Per iphClk In i t = {0} ;

/✯✯ I n i t i a l i z e s the CPU, AHB and APB busses c l o ck s
✯/
RCC OscInitStruct . Osc i l l a to rType = RCC OSCILLATORTYPE MSI;
RCC OscInitStruct . MSIState = RCC MSI ON;

27

RCC OscInitStruct . MSICal ibrat ionValue = 0 ;
RCC OscInitStruct . MSIClockRange = RCC MSIRANGE 6;
RCC OscInitStruct .PLL. PLLState = RCC PLL NONE;
i f (HAL RCC OscConfig(&RCC OscInitStruct) != HAL OK)
{

Error Handler () ;
}
/✯✯ I n i t i a l i z e s the CPU, AHB and APB busses c l o ck s
✯/
RCC ClkInitStruct . ClockType = RCCCLOCKTYPEHCLK |RCC CLOCKTYPE SYSCLK

|RCC CLOCKTYPE PCLK1 |RCC CLOCKTYPE PCLK2;
RCC ClkInitStruct . SYSCLKSource = RCC SYSCLKSOURCE MSI;
RCC ClkInitStruct . AHBCLKDivider = RCC SYSCLK DIV1 ;
RCC ClkInitStruct . APB1CLKDivider = RCC HCLK DIV1 ;
RCC ClkInitStruct . APB2CLKDivider = RCC HCLK DIV1 ;

i f (HAL RCC ClockConfig(&RCC ClkInitStruct , FLASH LATENCY 0) != HAL OK)
{

Error Handler () ;
}
Per iphClk In i t . Pe r iphClockSe l e c t i on = RCC PERIPHCLK USART1 |RCC PERIPHCLK USART2

|RCC PERIPHCLK I2C1 ;
Per iphClk In i t . Usar t1ClockSe l e c t i on = RCC USART1CLKSOURCE PCLK2;
Per iphClk In i t . Usar t2ClockSe l e c t i on = RCC USART2CLKSOURCE PCLK1;
Per iphClk In i t . I 2 c1C lo ckSe l e c t i on = RCC I2C1CLKSOURCE PCLK1;
i f (HAL RCCEx PeriphCLKConfig(&Per iphClk In i t) != HAL OK)
{

Error Handler () ;
}
/✯✯ Conf igure the main i n t e r n a l r e gu l a t o r output vo l tage
✯/
i f (HAL PWREx ControlVoltageScaling (PWRREGULATORVOLTAGE SCALE1) != HAL OK)
{

Error Handler () ;
}

}

/✯✯
✯ @br ie f I2C1 I n i t i a l i z a t i o n Function
✯ @param None
✯ @retval None
✯/

s t a t i c void MX I2C1 Init (void)
{

/✯ USER CODE BEGIN I2C1 In i t 0 ✯/

/✯ USER CODE END I2C1 In i t 0 ✯/

/✯ USER CODE BEGIN I2C1 In i t 1 ✯/

/✯ USER CODE END I2C1 In i t 1 ✯/
hi2c1 . Ins tance = I2C1 ;
h i2c1 . I n i t . Timing = 0x00000E14 ;
h i2c1 . I n i t . OwnAddress1 = 0 ;
h i2c1 . I n i t . AddressingMode = I2C ADDRESSINGMODE 7BIT ;
h i2c1 . I n i t . DualAddressMode = I2C DUALADDRESS DISABLE;
h i2c1 . I n i t . OwnAddress2 = 0 ;
h i2c1 . I n i t . OwnAddress2Masks = I2C OA2 NOMASK;
hi2c1 . I n i t . GeneralCallMode = I2C GENERALCALL DISABLE;
h i2c1 . I n i t . NoStretchMode = I2C NOSTRETCH DISABLE;
i f (HAL I2C Init(&hi2c1) != HAL OK)
{

Error Handler () ;
}
/✯✯ Conf igure Analogue f i l t e r
✯/
i f (HAL I2CEx ConfigAnalogFilter(&hi2c1 , I2C ANALOGFILTER ENABLE) != HAL OK)

28

{
Error Handler () ;

}
/✯✯ Conf igure D i g i t a l f i l t e r
✯/
i f (HAL I2CEx Conf igDig i ta lFi l ter (&hi2c1 , 0) != HAL OK)
{

Error Handler () ;
}
/✯ USER CODE BEGIN I2C1 In i t 2 ✯/

/✯ USER CODE END I2C1 In i t 2 ✯/

}

/✯✯
✯ @br ie f USART1 I n i t i a l i z a t i o n Function
✯ @param None
✯ @retval None
✯/

s t a t i c void MX USART1 UART Init(void)
{

/✯ USER CODE BEGIN USART1 Init 0 ✯/

/✯ USER CODE END USART1 Init 0 ✯/

/✯ USER CODE BEGIN USART1 Init 1 ✯/

/✯ USER CODE END USART1 Init 1 ✯/
huart1 . In s tance = USART1;
huart1 . I n i t . BaudRate = 115200;
huart1 . I n i t . WordLength = UARTWORDLENGTH8B;
huart1 . I n i t . StopBits = UART STOPBITS 1 ;
huart1 . I n i t . Par i ty = UART PARITY NONE;
huart1 . I n i t .Mode = UARTMODE TXRX;
huart1 . I n i t . HwFlowCtl = UARTHWCONTROLNONE;
huart1 . I n i t . OverSampling = UART OVERSAMPLING 16;
huart1 . I n i t . OneBitSampling = UART ONE BIT SAMPLE DISABLE;
huart1 . AdvancedInit . AdvFeatureInit = UART ADVFEATURE NO INIT;
i f (HAL UART Init(&huart1) != HAL OK)
{

Error Handler () ;
}
/✯ USER CODE BEGIN USART1 Init 2 ✯/

/✯ USER CODE END USART1 Init 2 ✯/

}

/✯✯
✯ @br ie f USART2 I n i t i a l i z a t i o n Function
✯ @param None
✯ @retval None
✯/

s t a t i c void MX USART2 UART Init(void)
{

/✯ USER CODE BEGIN USART2 Init 0 ✯/

/✯ USER CODE END USART2 Init 0 ✯/

/✯ USER CODE BEGIN USART2 Init 1 ✯/

/✯ USER CODE END USART2 Init 1 ✯/
huart2 . In s tance = USART2;
huart2 . I n i t . BaudRate = 115200;
huart2 . I n i t . WordLength = UARTWORDLENGTH8B;

29

huart2 . I n i t . StopBits = UART STOPBITS 1 ;
huart2 . I n i t . Par i ty = UART PARITY NONE;
huart2 . I n i t .Mode = UARTMODE TXRX;
huart2 . I n i t . HwFlowCtl = UARTHWCONTROLNONE;
huart2 . I n i t . OverSampling = UART OVERSAMPLING 16;
huart2 . I n i t . OneBitSampling = UART ONE BIT SAMPLE DISABLE;
huart2 . AdvancedInit . AdvFeatureInit = UART ADVFEATURE NO INIT;
i f (HAL UART Init(&huart2) != HAL OK)
{

Error Handler () ;
}
/✯ USER CODE BEGIN USART2 Init 2 ✯/

/✯ USER CODE END USART2 Init 2 ✯/

}

/✯✯
✯ @br ie f GPIO I n i t i a l i z a t i o n Function
✯ @param None
✯ @retval None
✯/

s t a t i c void MX GPIO Init (void)
{

GPIO InitTypeDef GPIO InitStruct = {0} ;

/✯ GPIO Ports Clock Enable ✯/
HAL RCC GPIOA CLK ENABLE () ;
HAL RCC GPIOB CLK ENABLE () ;

/✯Conf igure GPIO pin Output Leve l ✯/
HAL GPIO WritePin (GPIOB, GPIO PIN 3 , GPIO PIN RESET) ;

/✯Conf igure GPIO pin : PB3 ✯/
GPIO InitStruct . Pin = GPIO PIN 3 ;
GPIO InitStruct .Mode = GPIO MODE OUTPUT PP;
GPIO InitStruct . Pul l = GPIO NOPULL;
GPIO InitStruct . Speed = GPIO SPEED FREQ LOW;
HAL GPIO Init (GPIOB, &GPIO InitStruct) ;

}

/✯ USER CODE BEGIN 4 ✯/

void ESP32 Init (void) {
Tx buff [0]=1 ;
Tx buff [1]= ’\n ’ ;
HAL UART Transmit IT(&huart2 , (u i n t 8 t ✯) Tx buff , 2) ;
HAL UART Receive(&huart2 , Rx buff2 , 1 , 1 0 0) ;
HAL Delay (5 0) ;
i f (Rx buff2 [0] == ’2 ’) CONNECTED WIFI = 1 ;
whi l e (CONNECTED WIFI == 0) {

HAL UART Transmit IT(&huart2 , (u i n t 8 t ✯) Tx buff , 2) ;
HAL UART Receive(&huart2 , Rx buff2 , 1 , 1 0 0) ;
i f (Rx buff2 [0] == ’2 ’) CONNECTED WIFI = 1 ;
HAL Delay (5 0) ;

}

Tx buff [0]=3 ;
HAL UART Transmit IT(&huart2 , (u i n t 8 t ✯) Tx buff , 2) ;
HAL UART Receive(&huart2 , Rx buff2 , 1 , 1 0 0) ;
i f (Rx buff2 [0] == ’4 ’) CONNECTEDSERVER = 1 ;
HAL Delay (5 0) ;
whi l e (CONNECTEDSERVER == 0) {

HAL UART Transmit IT(&huart2 , (u i n t 8 t ✯) Tx buff , 2) ;
HAL UART Receive(&huart2 , Rx buff2 , 1 , 1 0 0) ;
i f (Rx buff2 [0] == ’4 ’) CONNECTEDSERVER = 1 ;
HAL Delay (5 0) ;

30

}
}

void HAL UART RxCpltCallback (UART HandleTypeDef ✯huart) {
// i f (&huart1 == huart) {/✯ UART1 ✯/

i f (pktBuff . s i z e != PKT BUFFMAX) {
s t rncpy (pktBuff . bu f f [pktBuff . head] . pkt , (char ✯) Rx buff1 ,MOTE PKT SIZE) ;
pktBuff . s i z e++;
pktBuff . head++;
i f (pktBuff . head == PKT BUFFMAX) pktBuff . head = 0 ;
CURRENTPKTCOUNT++;

}
HAL UART Receive IT(&huart1 , (u i n t 8 t ✯) Rx buff1 ,MOTE PKT SIZE) ;

//}
}

void UpdateMotes (void const ✯ arguments) {
i n t loopCount = 0 ;
f o r (; ;) {

i n t newTotal = 0 ;
f o r (i n t i = 0 ; i < MAXMOTES; i++) {

i f (networkMotes . a c t i v e [i] > 0) newTotal++;
}
ACTIVE MOTES = newTotal ;
loopCount++;
i f (loopCount == 10) {

u in t 32 t waitOnVal ;
osSignalWait (0 x0001 , 1 0 0 0) ;
f o r (i n t i = 0 ; i < MAXMOTES; i++) {

// mark a l l as i na c t i v e , motes that send packets with in 10 seconds w i l l be
// remarked as a c t i v e

networkMotes . a c t i v e [i] <= 0 ? networkMotes . a c t i v e [i] = 0 : networkMotes . a c t i v e [i]−−;
}
loopCount = 0 ;

}
osDelay (1000) ;

}
}

void LCDTask(void const ✯ argument)
{

/✯ USER CODE BEGIN 5 ✯/
/✯ I n f i n i t e loop ✯/

// i n t loopCount = 0 ;
// char write2Uart2 [2 0] ;
i n t timesThrough = 1 ;
f o r (; ;)

{

s np r i n t f (d i sp lay , s i z e o f (d i sp l ay) ,”% s ” ,”Pkt cnt : ”) ;

s n p r i n t f (d i sp l ay+8, s i z e o f (d i sp l ay)−8,”%d” ,CURRENTPKTCOUNT) ;
s s d 1 3 0 6 F i l l (Black) ;
s sd1306 SetCursor (0 ,LCD ROW 1) ;
s sd1306 Wri teSt r ing (d i sp lay , Font 6x8 ,White) ;

i f (MOTEBATTERYLOW) {
s sd1306 SetCursor (0 , (LCD ROW 2+LCD ROW 3) / 2) ;
s t rncpy (d i sp lay ,MOTEBATTERYLOWADDR, 5) ;
s np r i n t f (d i sp l ay+5, s i z e o f (d i sp l ay)−5,”%s ” ,” Batt ! ”) ;
s sd1306 Wri teSt r ing (d i sp lay , Font 7x10 , White) ;

}

s sd1306 SetCursor (0 ,LCD ROW 4) ;
i f (CONNECTED WIFI) {

ssd1306 WriteSymbol (Sym Wifi , White) ;
} e l s e {

ssd1306 WriteSymbolSpace () ;

31

}
ssd1306 WriteSymbolSpace () ;
i f (CONNECTEDSERVER) {

ssd1306 WriteSymbol (Sym Server , White) ;
}
s sd1306 SetCursor (75 ,LCD ROW 1) ;
s np r i n t f (d i sp lay , s i z e o f (d i sp l ay) ,”% s ” ,” Act ive : ”) ;
s sd1306 Wri teSt r ing (d i sp lay , Font 7x10 , White) ;
s sd1306 SetCursor (93 ,LCD ROW 2) ;
s np r i n t f (d i sp lay , s i z e o f (d i sp l ay) ,”%2d” ,ACTIVE MOTES) ;
s sd1306 Wri teSt r ing (d i sp lay , Font 11x18 , White) ;
ssd1306 UpdateScreen () ;

HAL GPIO TogglePin (GPIOB, GPIO PIN 3) ;
// d i sp l ay++;

osDelay (1000) ;
}
/✯ USER CODE END 5 ✯/

}

/✯ USER CODE END 4 ✯/

/✯ USER CODE BEGIN Header StartDefaultTask ✯/
/✯✯

✯ @br ie f Function implementing the de fau l tTask thread .
✯ @param argument : Not used
✯ @retval None
✯/

/✯ USER CODE END Header StartDefaultTask ✯/
void StartDefaul tTask (void const ✯ argument)
{

HAL UART AbortReceive(&huart1) ;
HAL UART Receive IT(&huart1 , (u i n t 8 t ✯) Rx buff1 ,MOTE PKT SIZE) ;

/✯ USER CODE BEGIN 5 ✯/
/✯ I n f i n i t e loop ✯/

char currentPkt [MOTE PKT SIZE] ;
char currentAddr [5] ;
o sStatus s t a tu s ;

f o r (; ;)
{

whi le (pktBuff . s i z e > 0) {
s t rncpy (currentPkt , pktBuff . bu f f [pktBuff . t a i l] . pkt ,MOTE PKT SIZE) ;
// cannot i n t e r r up t when t h i s f unc t i on mod i f i e s the t a i l po in t e r and
// number o f cu r r en t l y he ld elements , s i n c e the UART RX ca l l ba ck can
// i n t e r r up t at any time
taskENTER CRITICAL () ;
pktBuff . t a i l ++;
i f (pktBuff . t a i l == PKT BUFFMAX) pktBuff . t a i l = 0 ;
pktBuff . s i z e −−;
taskEXIT CRITICAL () ;

i f (isalnum (currentPkt [0])) {
// obtained packet , so now i t s okay to a l low ca l l ba ck func t i on to
// t h i s element ’ s spot
strncpy (currentAddr , currentPkt +10 ,5) ;
i n t l i s t edMote = 0 ;

// update a c t i v e motes
// { MAKE THIS A HASH MAPPING WITH SINGLE STEP OFFSET
f o r (i n t i = 0 ; i < networkMotes . s i z e ; i++) {

i f (strncmp (networkMotes . moteAddr [i] . addr , currentAddr ,5)==0) {
networkMotes . a c t i v e [i] = MOTE ACTIVE;
l i s t edMote = 1 ;

}
}

32

i f (l i s t edMote == 0 && networkMotes . s i z e < MAXMOTES) {
s t rncpy (networkMotes . moteAddr [networkMotes . s i z e] . addr , currentAddr , 5) ;
networkMotes . a c t i v e [networkMotes . s i z e] = MOTE ACTIVE;
networkMotes . s i z e++;

}
// }

// update low batte ry
char bat t e rySta t [4] ;
s t rncpy (batteryStat , currentPkt +5 ,4) ;
i f (a t o i (ba t t e rySta t) < MOTEBATTERYTHRES) {

MOTEBATTERYLOW = 1;
strncpy (MOTEBATTERYLOWADDR, currentAddr , 5) ;

}

// send new data to s e r v e r
Tx buff [0]=5 ;
Tx buff [1]= ’\n ’ ;
HAL UART Transmit IT(&huart2 , (u i n t 8 t ✯) Tx buff , 2) ;
HAL Delay (5 0) ;
s t rncpy (Tx buff , currentPkt , 5) ;
s t rncpy (Tx buff+5, currentAddr , 5) ;
Tx buff [10]= ’\n ’ ;
HAL UART Transmit IT(&huart2 , (u i n t 8 t ✯) Tx buff , 1 1) ;
HAL Delay (5 0) ;
Tx buff [0]=6 ;
Tx buff [1]= ’\n ’ ;
HAL UART Transmit IT(&huart2 , (u i n t 8 t ✯) Tx buff , 2) ;
HAL UART Receive(&huart2 , (u i n t 8 t ✯) Rx buff2 , 1 , 1 0 0) ;
HAL Delay (1000) ;
whi l e (Rx buff2 [0] != ’7 ’) {

Tx buff [0]=5 ;
Tx buff [1]= ’\n ’ ;
HAL UART Transmit IT(&huart2 , (u i n t 8 t ✯) Tx buff , 2) ;
HAL Delay (5 0) ;
s t rncpy (Tx buff , currentPkt , 5) ;
s t rncpy (Tx buff+5, currentAddr , 5) ;
Tx buf f [10]= ’\n ’ ;
HAL UART Transmit IT(&huart2 , (u i n t 8 t ✯) Tx buff , 1 0) ;
HAL Delay (5 0) ;
Tx buff [0]=6 ;
Tx buff [1]= ’\n ’ ;
HAL UART Transmit IT(&huart2 , (u i n t 8 t ✯) Tx buff , 2) ;
HAL UART Receive(&huart2 , (u i n t 8 t ✯) Rx buff2 , 1 , 1 0 0) ;
HAL Delay (1000) ;

}
}

}

s t a tu s = osThreadYield () ;
configASSERT(s t a tu s == osOK) ;

}
/✯ USER CODE END 5 ✯/

}

/✯✯
✯ @br ie f Per iod e lapsed ca l l b a ck in non b lock ing mode
✯ @note This func t i on i s c a l l e d when TIM1 in t e r r up t took place , i n s i d e
✯ HAL TIM IRQHandler () . I t makes a d i r e c t c a l l to HAL IncTick () to increment
✯ a g l oba l v a r i a b l e ”uwTick” used as app l i c a t i o n time base .
✯ @param htim : TIM handle
✯ @retval None
✯/

void HAL TIM PeriodElapsedCallback (TIM HandleTypeDef ✯htim)
{

/✯ USER CODE BEGIN Cal lback 0 ✯/

33

/✯ USER CODE END Cal lback 0 ✯/
i f (htim−>In s tance == TIM1) {

HAL IncTick () ;
}
/✯ USER CODE BEGIN Cal lback 1 ✯/

/✯ USER CODE END Cal lback 1 ✯/
}

/✯✯
✯ @br ie f This func t i on i s executed in case o f e r r o r occur rence .
✯ @retval None
✯/

void Error Handler (void)
{

/✯ USER CODE BEGIN Error Handler Debug ✯/
/✯ User can add h i s own implementation to r epor t the HAL e r r o r re turn s t a t e ✯/

/✯ USER CODE END Error Handler Debug ✯/
}

#i f d e f USE FULL ASSERT
/✯✯

✯ @br ie f Reports the name o f the source f i l e and the source l i n e number
✯ where the assert param e r r o r has occurred .
✯ @param f i l e : po in t e r to the source f i l e name
✯ @param l i n e : asser t param e r r o r l i n e source number
✯ @retval None
✯/

void a s s e r t f a i l e d (char ✯ f i l e , u i n t 32 t l i n e)
{

/✯ USER CODE BEGIN 6 ✯/
/✯ User can add h i s own implementation to r epor t the f i l e name and l i n e number ,

tex : p r i n t f (”Wrong parameters va lue : f i l e %s on l i n e %d\ r \n” , f i l e , l i n e) ✯/
/✯ USER CODE END 6 ✯/

}
#end i f /✯ USE FULL ASSERT ✯/

/✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯ (C) COPYRIGHT STMicroe l e c t ron i c s ✯✯✯✯✯END OF FILE✯✯✯✯/

34

4.3 ESP32 Sub-System Code

// f o r AdafruitIO
#inc lude ” c on f i g . h”
#inc lude <s t r i n g . h>

//AdafruitIO Feed ✯mote1 = io . f e ed (” f6775 ”) ;
//AdafruitIO Feed ✯mote2 = io . f e ed (” cd6c7 ”) ;
#de f i n e MAXMOTES 64

/✯
Next : Implement hash tab l e with l i n e a r probing f o r mote addre s s e s

f o r qu i cke r lookup
✯/
c l a s s AIO Feed Class {

pr i va t e :
s i z e t currentMotes ;
S t r ing motes [MAXMOTES] ;
AdafruitIO Feed ✯AIOfeeds [MAXMOTES] ;

pub l i c :
AIO Feed Class () ;
˜AIO Feed Class () ;
bool insertAddr (S t r ing addr) ;
bool checkAddr (S t r ing addr) ;
bool sendData (S t r ing addr , S t r ing Data) ;
i n t getIndx (St r ing addr) ;

} ;

AIO Feed Class : : AIO Feed Class () {
f o r (i n t i = 0 ; i < MAXMOTES; i++) {

motes [i] = ”00000”;
}
currentMotes = 0 ;

}

AIO Feed Class : : ˜ AIO Feed Class () {}

bool AIO Feed Class : : insertAddr (S t r ing addr) {
i f (currentMotes == MAXMOTES) return f a l s e ;
u i n t 32 t indx = ((0 x0F & (addr [4])) | (0x0F & (addr [3] << 4)) | (0 xF00 & (addr [2] << 8))\

| (0 xF000 & (addr [1] << 12)) | (0 xF0000 & (addr [0] << 1 6))) ;
indx = indx % MAXMOTES;
whi l e (motes [indx] != ”00000”) {

indx++;
i f (indx == MAXMOTES) indx = 0 ;

}
motes [indx] = addr ;
char addrCharStr [6] ;
addr . toCharArray (addrCharStr , 6) ;
AIOfeeds [indx] = i o . f e ed (addrCharStr) ;
currentMotes++;
re turn t rue ;

}

bool AIO Feed Class : : checkAddr (S t r ing addr) {
i f (currentMotes == 0) re turn f a l s e ;
u i n t 16 t indx = ((0 x0F & (addr [4])) | (0x0F & (addr [3] << 4)) | (0 xF00 & (addr [2] << 8))\

| (0 xF000 & (addr [1] << 1 2))) ;
indx = indx % MAXMOTES;
i n t timesThrough = 0 ;
whi l e (motes [indx] != addr) {

i f (motes [indx] == NULL) return f a l s e ;
indx++;
i f (indx == MAXMOTES) indx = 0 ;
timesThrough++;
i f (timesThrough == MAXMOTES) return f a l s e ;

35

}
r e turn t rue ;

}

i n t AIO Feed Class : : getIndx (St r ing addr) {
i f (currentMotes == 0) re turn −1;
u i n t 16 t indx = ((0 x0F & (addr [4])) | (0x0F & (addr [3] << 4)) | (0 xF00 & (addr [2] << 8))\

| (0 xF000 & (addr [1] << 1 2))) ;
indx = indx % MAXMOTES;
i n t timesThrough = 0 ;
whi l e (motes [indx] != addr) {

indx++;
i f (indx == MAXMOTES) indx = 0 ;
timesThrough++;
i f (timesThrough == MAXMOTES) return −1;

}
r e turn indx ;

}

bool AIO Feed Class : : sendData (S t r ing addr , S t r ing Data) {
i f (checkAddr (addr) == f a l s e) insertAddr (addr) ;
i n t indx = getIndx (addr) ;
AIOfeeds [indx]−>save (Data . t o In t ()) ;
r e turn t rue ;

}

HardwareSer ia l S e r i a l 3 (2) ;
S t r ing inOperat ion ;
S t r ing inData ;

void setup () {
// put your setup code here , to run once :
S e r i a l 3 . begin (115200) ;
S e r i a l . begin (9600) ;

// connect to i o . a da f r u i t . com
io . connect () ;

// wait f o r a connect ion
whi l e (i o . s t a tu s () < AIO CONNECTED) {

S e r i a l . p r i n t (” . ”) ;
de lay (5 0 0) ;

}
S e r i a l . p r i n t (” Connected ! ”) ;

}

void loop () {
S e r i a l 3 . f l u s h () ;
i n t incomingByte ;
AIO Feed Class a ioFeeds ;
whi l e (t rue) {

i o . run () ;
i f (S e r i a l 3 . a v a i l a b l e () > 0) {

i f (S e r i a l 3 . a v a i l a b l e () > 20) {
S e r i a l 3 . f l u s h () ;
cont inue ;

}
inOperat ion = S e r i a l 3 . r e adSt r i ngUnt i l (’\n ’) ;
inOperat ion . tr im () ;
i n t oper=inOperat ion . charAt (0) ;
S e r i a l . p r i n t (” Reveived : ”) ;
S e r i a l . p r i n t l n (oper) ;
// i f (inOperat ion . t o In t ()) {
// oper = inOperat ion . t o In t () ;
//} e l s e { cont inue ;}

// mote system reque s t s w i f i connect ion

36

i f (oper == 1) {
i f (i o . s t a tu s () >= AIO CONNECTED) {

S e r i a l . p r i n t l n (” Sending Wifi Ack ”) ;
S e r i a l 3 . p r i n t ((i n t) 2) ;

} e l s e {
i o . connect () ;
whi l e (i o . s t a tu s () < AIO CONNECTED) {

delay (5 0 0) ;
}
S e r i a l . p r i n t (” Sending Wifi Ack ”) ;
S e r i a l 3 . p r i n t ((i n t) 2) ;

}

// mote system r equ r e s t s s e r v e r connect ion
} e l s e i f (oper == 3) {

i f (i o . s t a tu s () >= AIO CONNECTED) {
S e r i a l . p r i n t l n (” Sending Server Ack ”) ;
S e r i a l 3 . p r i n t (4) ;

} e l s e {
i o . connect () ;
whi l e (i o . s t a tu s () < AIO CONNECTED) {

delay (5 0 0) ;
}
S e r i a l . p r i n t l n (” Sending Server Ack ”) ;
S e r i a l 3 . p r i n t (4) ;

}

// mote system reque s t s data t r a n s f e r to s e r v e r
} e l s e i f (oper == 5) {

S e r i a l . p r i n t l n (” Request to send data ”) ;
de lay (5) ;
de lay (5) ;
inData = S e r i a l 3 . r e adSt r i ngUnt i l (’\n ’) ;
S t r ing Data = inData . sub s t r i ng (0 , 4) , Addr = inData . sub s t r i ng (5 , 1 1) ;
Data . tr im () , Addr . tr im () ;
S e r i a l . p r i n t (”Addr : ”) ;
S e r i a l . p r i n t (Addr) ;
S e r i a l . p r i n t (” Data : ”) ;
S e r i a l . p r i n t l n (Data) ;
a ioFeeds . sendData (Addr , Data) ;
S e r i a l 3 . p r i n t (7) ;

}
}
delay (5 0) ;

}
}

37

4.4 TelosB Server Code

/✯
✯ Red i s t r i bu t i on and use in source and binary forms , with or without
✯ modi f i ca t i on , are permitted provided that the f o l l ow i n g cond i t i on s
✯ are met :
✯ 1 . Red i s t r i bu t i on s o f source code must r e t a i n the above copyr ight
✯ not i ce , t h i s l i s t o f c ond i t i on s and the f o l l ow i ng d i s c l a ime r .
✯ 2 . Red i s t r i bu t i on s in binary form must reproduce the above copyr ight
✯ not i ce , t h i s l i s t o f c ond i t i on s and the f o l l ow i ng d i s c l a ime r in the
✯ documentation and/ or other mat e r i a l s provided with the d i s t r i b u t i o n .
✯ 3 . Ne i ther the name o f the I n s t i t u t e nor the names o f i t s c on t r i bu t o r s
✯ may be used to endorse or promote products der ived from th i s so f tware
✯ without s p e c i f i c p r i o r wr i t t en permis s ion .
✯

✯ THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ‘ ‘AS IS ’ ’ AND
✯ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
✯ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
✯ ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
✯ FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
✯ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
✯ OR SERVICES ; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
✯ HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT
✯ LIABILITY , OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
✯ OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
✯ SUCH DAMAGE.
✯

✯ This f i l e i s part o f the Cont ik i ope ra t ing system .
✯

✯/

#inc lude ” c on t i k i . h”
#inc lude ”net / rout ing / rout ing . h”
#inc lude ”net / net s tack . h”
#inc lude ”net / ipv6 / simple−udp . h”

#inc lude ” sys / log . h”
#de f i n e LOGMODULE ”App”
#de f i n e LOG LEVEL LOG LEVEL INFO

#de f i n e WITH SERVER REPLY 1
#de f i n e UDP CLIENT PORT 8765
#de f i n e UDP SERVER PORT 5678

s t a t i c s t r u c t s imple udp connect ion udp conn ;

PROCESS(udp se rve r p roc e s s , ”UDP se rv e r ”) ;
AUTOSTART PROCESSES(&udp s e rv e r p r o c e s s) ;
/✯−−−✯/
s t a t i c void
udp rx ca l l back (s t r u c t s imple udp connect ion ✯c ,

const u i p i padd r t ✯ sender addr ,
u i n t 16 t sender por t ,
const u i p i padd r t ✯ r e c e i v e r add r ,
u i n t 16 t r e c e i v e r p o r t ,
const u i n t 8 t ✯data ,
u i n t 16 t data len)

{
/✯ char SIG ADDR [5] = { sender addr−>u8 [1 1] , sender addr−>u8 [1 2] , sender addr−>u8 [1 3] , \

sender addr−>u8 [1 4] , sender addr−>u8 [1 5] } ; ✯ /
p r i n t f (”%.✯ s ” , datalen , (char ✯) data) ;

u i n t 8 t recv addr [5] ;
i n t i = 0 ;
whi l e (i < 3) {
// f o r (i n t i = 0 ; i < 4 ; i++) {

recv addr [i ✯2] = 0xF & (sender addr−>u8[15− i]) ;
i f (i < 2)

38

recv addr [i ✯2 + 1] = sender addr−>u8[15− i] >> 4 ;
i++;

}
i = 4 ;
whi l e (i >= 0) {

i f (r ecv addr [i] <= 9) p r i n t f (”%d” , recv addr [i]) ;
e l s e i f (r ecv addr [i] == 10) p r i n t f (” a ”) ;
e l s e i f (r ecv addr [i] == 11) p r i n t f (”b ”) ;
e l s e i f (r ecv addr [i] == 12) p r i n t f (” c ”) ;
e l s e i f (r ecv addr [i] == 13) p r i n t f (”d ”) ;
e l s e i f (r ecv addr [i] == 14) p r i n t f (” e ”) ;
e l s e i f (r ecv addr [i] == 15) p r i n t f (” f ”) ;
i−−;

}
p r i n t f (”\n ”) ;
// p r i n t f (”%d %d %d %d %d” , recv addr [0] , r ecv addr [1] , r ecv addr [2] , r ecv addr [3] ,

// recv addr [4]) ;
//LOG INFO 6ADDR(sender addr) ;

//LOG INFO 6ADDR(sender addr) ;
#i f WITH SERVER REPLY

/✯ send back the same s t r i n g to the c l i e n t as an echo r ep ly ✯/
//LOG INFO(” Sending response .\n ”) ;
s imple udp sendto (&udp conn , data , datalen , sender addr) ;

#end i f /✯ WITH SERVER REPLY ✯/
}
/✯−−−✯/
PROCESS THREAD(udp se rve r p roc e s s , ev , data)
{

PROCESS BEGIN() ;

/✯ I n i t i a l i z e DAG root ✯/
NETSTACKROUTING. r o o t s t a r t () ;

/✯ I n i t i a l i z e UDP connect ion ✯/
s imp l e udp r e g i s t e r (&udp conn , UDP SERVER PORT, NULL,

UDP CLIENT PORT, udp rx ca l l back) ;

PROCESS END() ;
}
/✯−−−✯/

39

References

[1] Advantic Sistemas Y Servicios S.L., “CM5000 DATASHEET,” TelosB datasheet, Oct.,
2010.

[2] Texas Instruments, “CC2630 SimpleLink➋ 6LoWPAN, ZigBee➤ Wireless MCU,”
CC2630 datasheet, July, 2016.

[3] Texas Instruments, “CC2538 Powerful Wireless Microcontroller System-On-Chip for
2.4-GHz IEEE 802.15.4, 6LoWPAN, and ZigBee➤ Applications,” CC2538 datasheet,
April, 2015.

[4] Texas Instruments, “CC2650 SimpleLink➋ Multistandard Wireless MCU,” CC2650
datasheet, July, 2016.

[5] “CC13xx/CC26xx Hardware Configuration and PCB Design Considerations,” Texas
Instruments Incorporated, May, 2020.

[6] “CC2650 SimpleLink➋Multistandard Wireless MCU,” Texas Instruments Incorporated,
Mar., 2015.

[7] “Humidity and Temperature Sensor Node for Star Networks Enabling 10+ Year Coin
Cell Battery Life,” Texax Instruments Incorporated, May, 2016.

[8] Texas Instruments Incorporated, “CC2538EM Reference Design,” 2020. [Online].
Available: https://www.ti.com/tool/CC2538EM-RD. [Accessed Sept. 28, 2020].

40

